Institutsseminar/2021-02-05 Zusatztermin: Unterschied zwischen den Versionen

Aus SDQ-Institutsseminar
(Die Seite wurde neu angelegt: „{{Termin |datum=2021/02/05 11:30:00 |raum=https://conf.dfn.de/webapp/conference/979160755 }}“)
 
Keine Bearbeitungszusammenfassung
 
(Eine dazwischenliegende Version von einem anderen Benutzer wird nicht angezeigt)
Zeile 1: Zeile 1:
{{Termin
{{Termin
|datum=2021/02/05 11:30:00
|datum=2021/02/05 11:30:00
|raum=https://conf.dfn.de/webapp/conference/979160755
|online=https://conf.dfn.de/webapp/conference/979148706
}}
}}

Aktuelle Version vom 14. Januar 2022, 13:18 Uhr

Termin (Alle Termine)
Datum Freitag, 5. Februar 2021
Uhrzeit 11:30 – 11:50 Uhr (Dauer: 20 min)
Ort
Webkonferenz https://conf.dfn.de/webapp/conference/979148706
Vorheriger Termin Fr 29. Januar 2021
Nächster Termin Fr 12. Februar 2021

Termin in Kalender importieren: iCal (Download)

Vorträge

Vortragende(r) Florian Leiser
Titel Modeling Dynamic Systems using Slope Constraints: An Application Analysis of Gas Turbines
Vortragstyp Proposal
Betreuer(in) Pawel Bielski
Vortragssprache
Vortragsmodus
Kurzfassung In energy studies, researchers build models for dynamic systems to predict the produced electrical output precisely. Since experiments are expensive, the researchers rely on simulations of surrogate models. These models use differential equations that can provide decent results but are computationally expensive. Further, transition phases, which occur when an input change results in a delayed change in output, are modeled individually and therefore lacking generalizability.

Current research includes Data Science approaches that need large amounts of data, which are costly when performing scientific experiments. Theory-Guided Data Science aims to combine Data Science approaches with domain knowledge to reduce the amount of data needed while predicting the output precisely.

However, even state-of-the-art Theory-Guided Data Science approaches lack the possibility to model the slopes occuring in the transition phases. In this thesis we aim to close this gap by proposing a new loss constraint that represents both transition and stationary phases. Our method is compared with theoretical and Data Science approaches on synthetic and real world data.

Neuen Vortrag erstellen

Hinweise