Differentially Private Event Sequences over Infinite Streams: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „{{Vortrag |vortragender=Nico Weidmann |email=nico.weidmann@student.kit.edu |vortragstyp=Bachelorarbeit |betreuer=Christine Tex |termin=Institutsseminar/2019-11…“) |
Keine Bearbeitungszusammenfassung |
||
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt) | |||
Zeile 5: | Zeile 5: | ||
|betreuer=Christine Tex | |betreuer=Christine Tex | ||
|termin=Institutsseminar/2019-11-08 Zusatztermin | |termin=Institutsseminar/2019-11-08 Zusatztermin | ||
|kurzfassung= | |kurzfassung=Mit Smart Metern erfasste Datenströme stellen eine Gefahr für die Privatheit dar, sodass Bedarf für Privatheitsverfahren besteht. Aktueller Stand der Technik für Datenströme ist w-event differential privacy. Dies wurde bisher v.a. für die Publikation von Histogram-Queries verwendet. Ziel dieser Arbeit ist die eingehende experimentelle Analyse der Mechanismen, mit dem Fokus darauf zu beurteilen, wie gut diese Mechanismen sich für die Publikation von Sum-Queries, wie sie im Smart Meter Szenario gebraucht werden, eignen. Die Arbeit besteht aus drei Teilen: (1) Reproduktion der in der Literatur propagierten guten Ergebnisse der wichtigsten w-event DP Mechanismen für Histogram-Queries, (2) Evaluierung deren Qualität bei Anwendung auf Smart Meter Daten (Sum-Queries), (3) Evaluierung der Qualität zweier Mechanismen bzgl. der Gewährleistung von Pan-Privacy, einer erweiterten Garantie. Während wir in (1) die Ergebnisse größtenteils nicht reproduzieren konnten, erzielten wir in (2) gute Ergebnisse. Bzgl. (3) gelang es uns, die theoretische Qualitätsanalyse aus der Literatur zu bestätigen. | ||
-- | |||
}} | }} |
Aktuelle Version vom 4. November 2019, 09:36 Uhr
Vortragende(r) | Nico Weidmann | |
---|---|---|
Vortragstyp | Bachelorarbeit | |
Betreuer(in) | Christine Tex | |
Termin | Fr 8. November 2019 | |
Vortragssprache | ||
Vortragsmodus | ||
Kurzfassung | Mit Smart Metern erfasste Datenströme stellen eine Gefahr für die Privatheit dar, sodass Bedarf für Privatheitsverfahren besteht. Aktueller Stand der Technik für Datenströme ist w-event differential privacy. Dies wurde bisher v.a. für die Publikation von Histogram-Queries verwendet. Ziel dieser Arbeit ist die eingehende experimentelle Analyse der Mechanismen, mit dem Fokus darauf zu beurteilen, wie gut diese Mechanismen sich für die Publikation von Sum-Queries, wie sie im Smart Meter Szenario gebraucht werden, eignen. Die Arbeit besteht aus drei Teilen: (1) Reproduktion der in der Literatur propagierten guten Ergebnisse der wichtigsten w-event DP Mechanismen für Histogram-Queries, (2) Evaluierung deren Qualität bei Anwendung auf Smart Meter Daten (Sum-Queries), (3) Evaluierung der Qualität zweier Mechanismen bzgl. der Gewährleistung von Pan-Privacy, einer erweiterten Garantie. Während wir in (1) die Ergebnisse größtenteils nicht reproduzieren konnten, erzielten wir in (2) gute Ergebnisse. Bzgl. (3) gelang es uns, die theoretische Qualitätsanalyse aus der Literatur zu bestätigen. |