Development and evaluation of efficient kNN search of time series subsequences using the example of the Google Ngram data set: Unterschied zwischen den Versionen

Aus SDQ-Institutsseminar
(Die Seite wurde neu angelegt: „{{Vortrag |vortragender=Janek Bettinger |email=nobody@example.com |vortragstyp=Proposal |betreuer=Jens Willkomm |termin=Institutsseminar/2017-08-18 |kurzfassun…“)
 
(Änderung 2727 von Jv1963 (Diskussion) rückgängig gemacht.)
Markierung: Rückgängigmachung
 
(2 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 5: Zeile 5:
|betreuer=Jens Willkomm
|betreuer=Jens Willkomm
|termin=Institutsseminar/2017-08-18
|termin=Institutsseminar/2017-08-18
|kurzfassung=Folgt
|kurzfassung=There are many data structures and indices that speed up kNN queries on time series. The existing indices are designed to work on the full time series only. In this thesis we develop a data structure that allows speeding up kNN queries in an arbitrary time range, i.e. for an arbitrary subsequence.
}}
}}

Aktuelle Version vom 27. September 2023, 13:50 Uhr

Vortragende(r) Janek Bettinger
Vortragstyp Proposal
Betreuer(in) Jens Willkomm
Termin Fr 18. August 2017
Vortragssprache
Vortragsmodus
Kurzfassung There are many data structures and indices that speed up kNN queries on time series. The existing indices are designed to work on the full time series only. In this thesis we develop a data structure that allows speeding up kNN queries in an arbitrary time range, i.e. for an arbitrary subsequence.