Institutsseminar/2019-01-18: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „{{Termin |datum=2019/01/19 11:30:00 |raum=Raum 348 (Gebäude 50.34) }}“) |
Keine Bearbeitungszusammenfassung |
||
Zeile 1: | Zeile 1: | ||
{{Termin | {{Termin | ||
|datum=2019/01/ | |datum=2019/01/18 11:30:00 | ||
|raum=Raum 348 (Gebäude 50.34) | |raum=Raum 348 (Gebäude 50.34) | ||
}} | }} |
Aktuelle Version vom 19. Juni 2018, 12:19 Uhr
Datum | Freitag, 18. Januar 2019 | |
---|---|---|
Uhrzeit | 11:30 – 12:35 Uhr (Dauer: 65 min) | |
Ort | Raum 348 (Gebäude 50.34) | |
Webkonferenz | ||
Vorheriger Termin | Fr 11. Januar 2019 | |
Nächster Termin | Fr 25. Januar 2019 |
Termin in Kalender importieren: iCal (Download)
Vorträge
Vortragende(r) | Lena Witterauf |
---|---|
Titel | Density-Based Outlier Detection Benchmark on Synthetic Data |
Vortragstyp | Proposal |
Betreuer(in) | Georg Steinbuss |
Vortragssprache | |
Vortragsmodus | |
Kurzfassung | Outlier detection algorithms are widely used in application fields such as image processing and fraud detection. Thus, during the past years, many different outlier detection algorithms were developed. While a lot of work has been put into comparing the efficiency of these algorithms, comparing methods in terms of effectiveness is rather difficult. One reason for that is the lack of commonly agreed-upon benchmark data.
In this thesis the effectiveness of density-based outlier detection algorithms (such as KNN, LOF and related methods) on entirely synthetically generated data are compared, using its underlying density as ground truth. |
Vortragende(r) | Peter Schuller |
---|---|
Titel | Dynamic adaptation to service usage policies |
Vortragstyp | Masterarbeit |
Betreuer(in) | Robert Heinrich |
Vortragssprache | |
Vortragsmodus | |
Kurzfassung | Developing and approach for dynamic adaptation to service usage policies. |
- Neuen Vortrag erstellen