Multiwort-Bedeutungsaufösung für Anforderungen: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „{{Vortrag |vortragender=Thomas Bartel |email=ubjkw@student.kit.edu |vortragstyp=Bachelorarbeit |betreuer=Tobias Hey |termin=Institutsseminar/2020-04-03 |kurzfa…“) |
Keine Bearbeitungszusammenfassung |
||
(2 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 4: | Zeile 4: | ||
|vortragstyp=Bachelorarbeit | |vortragstyp=Bachelorarbeit | ||
|betreuer=Tobias Hey | |betreuer=Tobias Hey | ||
|termin=Institutsseminar/2020-04- | |termin=Institutsseminar/2020-04-24 | ||
|kurzfassung= | |kurzfassung=Zur automatischen Erzeugung von Rückverfolgbarkeitsinformationen muss zunächst die Absicht der Anforderungen verstanden werden. Die Grundvoraussetzung hierfür bildet das Verständnis der Bedeutungen der Worte innerhalb von Anforderungen. Obwohl hierfür bereits klassische Systeme zur Wortbedeutungsauflösung existieren, arbeiten diese meist nur auf Wortebene und ignorieren sogenannte "Multiwort-Ausdrücke" (MWAs), deren Bedeutung sich von der Bedeutung der einzelnen Teilworte unterscheidet. Im Rahmen des INDIRECT-Projektes wird deshalb ein System entwickelt, welches die MWAs mithilfe eines einfach verketteten Zufallsfeldes erkennt und anschließend eine wissensbasierte Bedeutungsauflösung mit den Wissensbasen DBpedia und WordNet 3.1 durchführt. Um das System zu evaluieren wird ein Datensatz aus frei verfügbaren Anforderungen erstellt. Das Teilsystem für die Erkennung von MWAs erreicht dabei maximal einen F1-Wert von 0.81. Die Bedeutungsauflösung mit der Wissensbasis DBpedia erreicht maximal einen F1-Wert von 0.496. Mit der Wissensbasis WordNet 3.1 wird maximal ein F1-Wert von 0.547 erreicht. | ||
}} | }} |
Aktuelle Version vom 15. April 2020, 09:18 Uhr
Vortragende(r) | Thomas Bartel | |
---|---|---|
Vortragstyp | Bachelorarbeit | |
Betreuer(in) | Tobias Hey | |
Termin | Fr 24. April 2020 | |
Vortragssprache | ||
Vortragsmodus | ||
Kurzfassung | Zur automatischen Erzeugung von Rückverfolgbarkeitsinformationen muss zunächst die Absicht der Anforderungen verstanden werden. Die Grundvoraussetzung hierfür bildet das Verständnis der Bedeutungen der Worte innerhalb von Anforderungen. Obwohl hierfür bereits klassische Systeme zur Wortbedeutungsauflösung existieren, arbeiten diese meist nur auf Wortebene und ignorieren sogenannte "Multiwort-Ausdrücke" (MWAs), deren Bedeutung sich von der Bedeutung der einzelnen Teilworte unterscheidet. Im Rahmen des INDIRECT-Projektes wird deshalb ein System entwickelt, welches die MWAs mithilfe eines einfach verketteten Zufallsfeldes erkennt und anschließend eine wissensbasierte Bedeutungsauflösung mit den Wissensbasen DBpedia und WordNet 3.1 durchführt. Um das System zu evaluieren wird ein Datensatz aus frei verfügbaren Anforderungen erstellt. Das Teilsystem für die Erkennung von MWAs erreicht dabei maximal einen F1-Wert von 0.81. Die Bedeutungsauflösung mit der Wissensbasis DBpedia erreicht maximal einen F1-Wert von 0.496. Mit der Wissensbasis WordNet 3.1 wird maximal ein F1-Wert von 0.547 erreicht. |