Patient Rule Induction Method with Active Learning: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 5: | Zeile 5: | ||
|betreuer=Vadim Arzamasov | |betreuer=Vadim Arzamasov | ||
|termin=Institutsseminar/2019-11-29 Zusatztermin | |termin=Institutsseminar/2019-11-29 Zusatztermin | ||
|kurzfassung=PRIM (Patient Rule Induction Method) is an algorithm | |kurzfassung=PRIM (Patient Rule Induction Method) is an algorithm for discovering scenarios from simulations, by creating hyperboxes, that are human-comprehensible. Yet PRIM alone requires relatively large datasets and computational simulations are usually quite expensive. Therefore, one wants to obtain a plausible scenario, with a minimal number of simulations. It has been shown, that combining PRIM with ML models, which generalize faster, can reduce the number of necessary simulation runs by around 75%. | ||
We | We will try to reduce the number of simulation runs even further, using an active learning approach to train a suitable model. | ||
Moreover, we are interested in applying | Moreover, we are interested in applying PRIM with Active Learning to classification as well as regression problems, utilizing different query strategies. Acquiring labels for a given dataset can be quite costly, with active learning, only a small part of the dataset has to be labeled. A preliminary experiment indicated, that the combination of these methods, does indeed help reduce the necessary runs even further. Though we only tried one possible sampling method thus far. Finding the best-suited combinations of components for the above described non-trivial problems is the focus of this Thesis. | ||
Acquiring labels for a given dataset can be quite costly, with active learning, only a small part of the dataset has to be labeled. A preliminary experiment indicated, that the combination of these methods, does indeed help reduce the necessary runs even further. Though we only tried one possible sampling method thus far. | |||
}} | }} |
Version vom 26. November 2019, 15:55 Uhr
Vortragende(r) | Emmanouil Emmanouilidis | |
---|---|---|
Vortragstyp | Proposal | |
Betreuer(in) | Vadim Arzamasov | |
Termin | Fr 29. November 2019 | |
Vortragssprache | ||
Vortragsmodus | ||
Kurzfassung | PRIM (Patient Rule Induction Method) is an algorithm for discovering scenarios from simulations, by creating hyperboxes, that are human-comprehensible. Yet PRIM alone requires relatively large datasets and computational simulations are usually quite expensive. Therefore, one wants to obtain a plausible scenario, with a minimal number of simulations. It has been shown, that combining PRIM with ML models, which generalize faster, can reduce the number of necessary simulation runs by around 75%.
We will try to reduce the number of simulation runs even further, using an active learning approach to train a suitable model. Moreover, we are interested in applying PRIM with Active Learning to classification as well as regression problems, utilizing different query strategies. Acquiring labels for a given dataset can be quite costly, with active learning, only a small part of the dataset has to be labeled. A preliminary experiment indicated, that the combination of these methods, does indeed help reduce the necessary runs even further. Though we only tried one possible sampling method thus far. Finding the best-suited combinations of components for the above described non-trivial problems is the focus of this Thesis. |