Performanzmodellierung von Apache Cassandra im Palladio-Komponentenmodell: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 6: | Zeile 6: | ||
|termin=Institutsseminar/2019-10-18 Zusatztermin | |termin=Institutsseminar/2019-10-18 Zusatztermin | ||
|kurzfassung=NoSQL-Datenbankmanagementsysteme werden als Back-End für Software im Big-Data-Bereich verwendet, da sie im Vergleich zu relationalen Datenbankmanagementsystemen besser skalieren, kein festes Datenbankschema benötigen und in virtuellen Systemen einfach eingesetzt werden können. Apache Cassandra wurde aufgrund seiner Verbreitung und seiner Lizensierung als Open-Source-Projekt als Beispiel für NoSQL-Datenbankmanagementsysteme ausgewählt. Existierende Modelle von Apache Cassandra betrachten dabei nur die maximal mögliche Anzahl an Anfragen an Cassandra und deren Durchsatz und Latenz. Diese Anzahl zu reduzieren erhöht die Latenz der einzelnen Anfragen. Das in dieser Bachelorarbeit erstellte Modell soll unter anderem diesen Effekt abbilden. | |kurzfassung=NoSQL-Datenbankmanagementsysteme werden als Back-End für Software im Big-Data-Bereich verwendet, da sie im Vergleich zu relationalen Datenbankmanagementsystemen besser skalieren, kein festes Datenbankschema benötigen und in virtuellen Systemen einfach eingesetzt werden können. Apache Cassandra wurde aufgrund seiner Verbreitung und seiner Lizensierung als Open-Source-Projekt als Beispiel für NoSQL-Datenbankmanagementsysteme ausgewählt. Existierende Modelle von Apache Cassandra betrachten dabei nur die maximal mögliche Anzahl an Anfragen an Cassandra und deren Durchsatz und Latenz. Diese Anzahl zu reduzieren erhöht die Latenz der einzelnen Anfragen. Das in dieser Bachelorarbeit erstellte Modell soll unter anderem diesen Effekt abbilden. | ||
Die Beiträge | Die Beiträge der Arbeit sind das Erstellen und Parametrisieren eines Modells von Cassandra im Palladio-Komponentenmodell und das Evaluieren des Modells anhand von Benchmarkergebnissen. Zudem wird für dieses Ziel eine Vorgehensweise entwickelt, die das Erheben der notwendigen Daten sowie deren Auswertung und Evaluierung strukturiert und soweit möglich automatisiert und vereinfacht. | ||
Die Evaluation des Modells erfolgt durch automatisierte Simulationen, deren Ergebnisse mit den Benchmarks verglichen werden. Dadurch konnte die Anwendbarkeit des Modells für einen Thread und eine beliebige Anzahl Anfragen bei gleichzeitiger Verwendung von einer oder mehreren verschiedenen Operationen, abgesehen von der Scan-Operation, gezeigt werden. | Die Evaluation des Modells erfolgt durch automatisierte Simulationen, deren Ergebnisse mit den Benchmarks verglichen werden. Dadurch konnte die Anwendbarkeit des Modells für einen Thread und eine beliebige Anzahl Anfragen bei gleichzeitiger Verwendung von einer oder mehreren verschiedenen Operationen, abgesehen von der Scan-Operation, gezeigt werden. | ||
}} | }} |
Aktuelle Version vom 13. September 2019, 13:54 Uhr
Vortragende(r) | Sebastian Weber | |
---|---|---|
Vortragstyp | Bachelorarbeit | |
Betreuer(in) | Dominik Werle | |
Termin | Fr 18. Oktober 2019 | |
Vortragssprache | ||
Vortragsmodus | ||
Kurzfassung | NoSQL-Datenbankmanagementsysteme werden als Back-End für Software im Big-Data-Bereich verwendet, da sie im Vergleich zu relationalen Datenbankmanagementsystemen besser skalieren, kein festes Datenbankschema benötigen und in virtuellen Systemen einfach eingesetzt werden können. Apache Cassandra wurde aufgrund seiner Verbreitung und seiner Lizensierung als Open-Source-Projekt als Beispiel für NoSQL-Datenbankmanagementsysteme ausgewählt. Existierende Modelle von Apache Cassandra betrachten dabei nur die maximal mögliche Anzahl an Anfragen an Cassandra und deren Durchsatz und Latenz. Diese Anzahl zu reduzieren erhöht die Latenz der einzelnen Anfragen. Das in dieser Bachelorarbeit erstellte Modell soll unter anderem diesen Effekt abbilden.
Die Beiträge der Arbeit sind das Erstellen und Parametrisieren eines Modells von Cassandra im Palladio-Komponentenmodell und das Evaluieren des Modells anhand von Benchmarkergebnissen. Zudem wird für dieses Ziel eine Vorgehensweise entwickelt, die das Erheben der notwendigen Daten sowie deren Auswertung und Evaluierung strukturiert und soweit möglich automatisiert und vereinfacht. Die Evaluation des Modells erfolgt durch automatisierte Simulationen, deren Ergebnisse mit den Benchmarks verglichen werden. Dadurch konnte die Anwendbarkeit des Modells für einen Thread und eine beliebige Anzahl Anfragen bei gleichzeitiger Verwendung von einer oder mehreren verschiedenen Operationen, abgesehen von der Scan-Operation, gezeigt werden. |