Entity Recognition in Software Documentation Using Trace Links to Informal Diagrams
(Weitergeleitet von Entity Recognition in Software Documentation using Diagrams)
Vortragende(r) | Fabian Reinbold | |
---|---|---|
Vortragstyp | Bachelorarbeit | |
Betreuer(in) | Dominik Fuchß | |
Termin | Fr 17. November 2023 | |
Vortragssprache | ||
Vortragsmodus | in Präsenz | |
Kurzfassung | Natural Language Software Architecture Documentation ( NLSAD ) and Software Architecture Model ( SAM) provide information about a software systems design and qualities. Inconsistencies between these artifacts can negatively impact the comprehension and evolution of the system. ArDoCo is an approach that was proposed in prior work by Keim et al. to find such inconsistencies and relies on Traceability Link Recovery (TLR) between entities in the NLSAD and SAM . ArDoCo searches for Unmentioned Model Elements (UMEs) in the model and Missing Model Elements (MMEs) in the text using the linkage information. ArDoCo’s approach shows promising results but has room for improvement regarding precision due to falsely identified textual entities. This work proposes using informal diagrams from the Software Architecture Documentation (SAD) to improve this. The approach performs an additional TLR between the textual entities and the diagram entities. According to heuristics, the linkage of textual entities and diagram entities is utilized to increase or decrease the confidence in textual entities. The Diagram Text TLR and its impact on ArDoCo’s performance are evaluated separately using the same data set as previous work by Keim et al. The data set was extended to include informal diagrams. The Diagram Text TLR achieves a good F1-score with Optical Character Recognition (OCR) of 0.54. The approach improves the MME detection (0.77→0.94 accuracy) by lowering the amount of falsely identified textual entities (0.39→0.69 precision) with a negligible impact on recall. The UME detection and ArDoCo ’s NLSAD to SAM are slightly positively impacted and continue to perform excellently. The results show that using informal diagrams to improve entity recognition in the text is promising. Room for improvement exists in dealing with issues related to OCR and diagram element processing. |