
Automated Modeling of I/O Performance and
Interference Effects in Virtualized Storage Systems

Qais Noorshams∗, Axel Busch∗, Andreas Rentschler∗, Dominik Bruhn∗, Samuel Kounev∗, Petr Tůma†, Ralf Reussner∗
∗Karlsruhe Institute of Technology, Germany (e-mail: [lastname]@kit.edu)

†Charles University in Prague, Czech Republic (e-mail: tuma@d3s.mff.cuni.cz)

Abstract—Modern IT systems frequently employ virtualization
technology to maximize resource efficiency. By sharing phys-
ical resources, however, the virtualized storage used in such
environments can quickly become a bottleneck. Performance
modeling and evaluation techniques applied prior to system
deployment help to avoid performance issues. In current practice,
however, modeling I/O performance is usually avoided due to the
increasing complexity of modern virtualized storage systems. In
this paper, we present an automated modeling approach based on
statistical regression techniques to analyze I/O performance and
interference effects in the context of virtualized storage systems.
We demonstrate our approach in three case studies creating
performance models with two I/O benchmarks. The case studies
are conducted in a real-world environment based on IBM System
z and IBM DS8700 server hardware. Using our approach, we
effectively create performance models with excellent prediction
accuracy for both I/O-intensive applications and I/O performance
interference effects with a mean prediction error up to 7%.

I. INTRODUCTION

Over the past decades, the I/O resource demands of modern IT

systems have increased exponentially [1]. Many I/O-intensive

applications, such as video streaming portals, online file storage

services, and social networking applications, are increasingly

often deployed in virtualized environments to exploit efficiency

benefits. Sharing physical resources in such scenarios requires

explicit analysis techniques of I/O performance and interference

effects to avoid performance bottlenecks during operation.

In current practice, however, virtualized storage and its

performance-influencing factors are often neglected or treated

as a black-box due to their complexity. Several explicit

modeling approaches considering I/O-intensive applications

in virtualized environments have been proposed, e.g., [2] and

our previous work in [3], which has shown, however, that such

manual performance modeling approaches require a significant

amount of time and expertise.

In this paper, we present a fully automated modeling

approach to analyze I/O performance and interference effects in

the context of virtualized storage systems based on three statisti-

cal regression techniques. Our goal is to maximize the practical

usability for such models and to minimize the manual effort

to create them. We demonstrate the benefit of our approach

in three case studies creating performance models using two

different I/O benchmarks. The case studies comprise models

of general I/O performance-influencing factors, of mixed

application workloads, and of I/O performance interference

effects in mixed virtualized environments. The case studies are

conducted in a real-world environment based on IBM System

z and IBM DS8700 server hardware. Using our approach, we

effectively create performance models with excellent prediction

accuracy. Using the best regression technique, the mean

prediction error is between 2.1% and 7% in the case studies.

In summary, the contribution of this paper is two-fold:

i) We present a framework for automated modeling of I/O

performance and interference effects in virtualized storage

systems. ii) We demonstrate our approach in three case studies

with two different benchmarks in a real-world environment

based on the state-of-the-art server technology of the IBM

System z and IBM DS8700. We extend our previous work [4]

by i) presenting the architecture of our automation and by ii)

evaluating our approach in two new case studies including

the extraction of performance models for I/O performance

interference effects in a heterogeneous, multi-VM scenario.

This paper is organized as follows: Section II presents our

methodology. In Section III, we illustrate the design of our

automation. An extensive evaluation of our approach in three

case studies is given in Section IV. Finally, Section V reviews

related work and Section VI concludes the paper.

II. METHODOLOGY

To systematically create performance models of virtualized

storage systems, we identify a general process (cf. Figure 1):

1. Modeling Target Specification
First, the system environment as well as the main modeling

goals are specified, e.g., evaluating performance-influencing

factors or analyzing performance interference effects.

2. Measurement Space Configuration
Depending on the goals and the system environment, the

measurement configuration (or parameter space) is defined.

This is used to perform the measurements in the next step, and

based on it, the independent variables used in the following

steps are determined.

3. Systematic Measurements
After the measurement space and the scenario are identified,

the measurement space is explored by performing systematic

measurements. The measurement metrics (e.g., response time

and throughput) are used as dependent variables in the

following steps.
4. Regression Optimization
Regression techniques are used to model the effect of the

independent variables on the dependent variables. Since the

2014 IEEE 34th International Conference on Distributed Computing Systems Workshops

1545-0678/14 $31.00 © 2014 IEEE

DOI 10.1109/ICDCSW.2014.26

88

optimal parameterization of regression techniques is usually

scenario dependent, we use the measurement data to optimally

tune the regression techniques for the specific scenario.

5. Regression-based Performance Modeling
Finally, the performance models are created using multiple

regression techniques, where a model is created for each

dependent variable. The models can be compared to choose

the best model for the scenario.

Steps 3 – 5 are fully automated and are only briefly

elaborated in the following due to space constraints. More

details can be found in [4].

A. Systematic Measurements

In a virtualized storage environment, a wide variety of

performance-influencing factors exists, cf. [5]. To evaluate the

factors, we support multiple scenarios based on different bench-

marks. A first scenario is applying fine-grained measurements

to evaluate the impact of the factors on the performance. This

allows to create a performance model of the system environment

with fine-grained configuration aspects. A second scenario is

analyzing mixed application workloads. This allows to evaluate

the system environment in typical scenarios and to create a

performance model, e.g., to predict the effect of workload

scaling when the number of users increases. Finally, we also

consider combinations of both to analyze interference effects

on co-located virtual machines (VMs). For each scenario, the

parameter space is then fully explored to extract a system

profile with systematic measurements, which are used for

performance modeling. We demonstrate each of the three

scenarios in Section IV.

B. Regression Optimization

Regression techniques usually have configuration parameters

(e.g., the maximum number of modeling terms) that influence

their effectiveness in a certain application scenario. To optimally

tune the regression techniques, i.e., find the best configuration

parameters for a given scenario, we apply a heuristic search

algorithm (introduced in [4]). For given data, we iteratively

search for best fitting regression parameters that minimize the

average root mean square error of a 10-fold cross-validation.

C. Regression-based Performance Modeling

In the following, we briefly introduce the three regression

techniques considered in this paper.

1) Multivariate Adaptive Regressions Splines (MARS) [6]

consist of piecewise linear functions, so-called hinge functions
hi. Thus, MARS constructs a model f of the form f(�x) =
β0+

∑n
i=1 βi hi(�x) with coefficients β0, . . . , βn. In this paper,

we consider MARS with interaction terms, which includes

terms that are a product of one or more hinge functions.

2) Classification and Regression Trees (CART) [7] are binary

decision trees with conditions in their non-leaf nodes and

constant values in their leaf nodes. To determine the value of

the dependant variable corresponding to a set of values of the

independent variables, the evaluation starts at the root and the

condition in this node is checked. If the condition is true, the

Modeling Target
Specification

Systematic
Measurements

Measurement Space
Configuration

Regression-based
Performance Modeling

Regression
Optimization

Independent
Variables

(Configuration)

Dependent
Variables

(Measurements)
Optimal

Regression
Parameters

Automated

Fig. 1: Performance Modeling Process (dashed: data flow)

left edge is followed, otherwise the right edge. This is repeated

until a leaf is reached.
3) Cubist forests [8], [9] are based on M5 trees [10], which

are binary decision trees with conditions in their non-leaf nodes

and linear regression models in their leaf nodes. Compared

to M5, Cubist introduces two extensions. First, it follows a

boosting-like approach, i.e., it creates a set of trees instead of

a single tree. Second, it combines model-based and instance-

based learning, i.e., it can adjust the prediction of unseen points

by the values of their nearest training points.

III. AUTOMATION DESIGN

Our methodology is automated as part of our Storage Per-
formance Analyzer (SPA) framework1. Next, we present the

high-level design and the components of SPA.

A. High-level Architecture
Illustrated in Figure 2, our SPA framework basically consists

of a benchmark harness that coordinates and controls the

execution of benchmarks and a tailored analysis library used

to process and evaluate the collected measurements. The

benchmark harness runs on a controller machine managing the

measurement process. Using SSH connections, the benchmark

controller first configures the benchmark, then it executes the

target workload, and it finally collects the results into an SQLite

database. The benchmark controller guarantees a synchronized

execution of experiments on multiple targets, i.e., on multiple

VMs that can be deployed on the same system. Currently, we

have integrated two benchmarks into our framework. We use

the open source Flexible File System Benchmark2 (FFSB) for a

fine-grained analysis and the Filebench benchmark3 to emulate

mixed application workloads, e.g., a file server workload. The

evaluation is automated using analysis functions implemented

using the open source statistics tool R [11]. The analysis

library comprises the analysis, optimization and regression

functions we created and applied for regression optimization

and performance modeling, cf. Section II-B and II-C.

1http://sdqweb.ipd.kit.edu/wiki/SPA
2https://github.com/FFSB-prime (extension of http://ffsb.sf.net)
3https://github.com/Filebench-Revise (includes fixes)

89

B. Components

Basically, our framework comprises a composite benchmarking
component, a composite performance modeling component, and

a persistence component that serves as an interface between

the former two components.

The benchmarking component realized in Java contains a

benchmark controller that explores the parameter space and

coordinates the benchmark runs accordingly. The benchmark

controller is connected to the benchmark driver, which is used

to configure and execute the benchmark. The benchmark driver

uses an internal remote execution component to communicate

with the actual benchmark, which is deployed on the target

system. In our implementation, the remote execution component

employs SSH connections, but it could be easily changed to

use another connection type. The benchmark controller saves

the measurement results using the persistence component.

The performance modeling component is integrated into R.

The datastore interface can load and prepare the measurement

data, e.g., by filtering irrelevant data. Both the regression
optimization and the regression modeling component can further

process this data or use other data specified by the user. The

regression optimization component comprises the optimization

algorithm outlined in Section II-B and uses the regression
techniques whose implementations are provided by R libraries.

The regression modeling component automatically creates the

models with the considered regression techniques.

IV. CASE STUDY

In this section, we present three case studies demonstrating

our approach in different scenarios.

A. System Under Study

In our case studies, we consider a representative virtualized

environment based on the IBM mainframe System z and the

storage system DS8700. The System z combined with the

DS8700 represents a high-end virtualized environment that can

be used as a building block of private cloud infrastructures.

The System z provides processors and memory, whereas the

DS8700 provides storage space.

The System z supports special Linux ports for System z

commonly denoted as z/Linux. The System z is connected to

the DS8700 via fibre channel. In the DS8700, storage requests

are handled by a storage server containing a volatile cache (VC)

and a non-volatile cache (NVC). The storage server is connected

via switched fibre channel to SSD- or HDD-based RAID arrays.

Furthermore, the storage server applies several pre-fetching

and destaging algorithms for optimal performance [12].

In our experimental environment, the DS8700 contains 2 GB

NVC and 50 GB VC with a RAID5 array containing seven

HDDs and measurements are obtained in z/Linux VMs with

ext4 file system and, unless specified otherwise, NOOP I/O

scheduler as it has recently been used as default scheduler

in virtualized environments [13]. We focus the measurements

on the storage performance using POSIX configuration and

explicitly take into account the cache of the storage system by

varying the overall size of data accessed in our workloads.

Analysis Library

Benchmark Harness

Benchmark
Controller

Benchmark
Driver

DataStore
Interface

Persistence
Component

Regression
Modeling

Regression
Optimization

Regression
Techniques

Benchmarking
Component

Performance Modeling
Component

Remote
Execution

R Libraries

SQLite

Benchmark
Benchmark

Fig. 2: Framework Architecture and Components

TABLE I: FFSB Experimental Setup Configuration

I/O scheduler CFQ, NOOP
Threads 100
File set size 1 GB, 25 GB, 50 GB, 75 GB, 100 GB
Request size 4 KB, 8 KB, 12 KB, 16 KB, 20 KB, 24 KB, 28 KB, 32 KB
Access pattern random, sequential
Read percentage 0%, 25%, 30%, 50%, 70%, 75%, 100%

MARS CART Cubist

0

10

20

30

0

10

20

30

M
ean

9
5

th
p

ercen
tile

RT r
RTw

TP r
TPw RT r

RTw
TP r

TPw RT r
RTw

TP r
TPw

R
el

at
iv

e
E

rr
o

r
(%

)

Fig. 3: Prediction Quality (Case Study I)

B. Modeling Performance Factors

Setup. In our first case study, we use FFSB to systematically

benchmark the system environment and major performance-

influencing parameters. The detailed setup configuration is

chosen representatively and shown in Table I. The parameter

space is fully explored leading to a total of 1120 measurement

configurations. For each configuration, we configure a one

minute warm up and a five minute measurement phase. The

measurement phase consists of five intervals of one minute

length each. In one minute, the benchmark obtains ∼575 000
measurement samples on average and between ∼90 000 and

2 800 000 measurement samples depending on the configuration,

while the mean response times of read and write requests are

in [2.2 ms, 70.4 ms] and [2.8 ms, 60.7 ms], respectively, and

the throughputs of read and write requests are in [4.02 MB/s,

386.70 MB/s] and [2.99 MB/s, 171.1 MB/s], respectively.

Performance Models. For each regression technique we

create four different models: A read response time model

90

(RTr), a write response time model (RTw), a read throughput

model (TPr), and a write throughput model (TPw).

Prediction Accuracy. We evaluate 100 configuration scenar-

ios with parameter values chosen completely randomly within

the configured ranges (e.g., 80 GB file set size, 30 KB request

size and so on). For each scenario, we compare the model

predictions with measurements on the real system.

Figure 3 shows the mean and the 95th percentile, i.e., the

value below which 95% of the prediction errors fall, of the

relative error for the various models. Overall, the models

perform very well and especially MARS and Cubist exhibit

excellent prediction accuracy with less than 7% and 8% error,

respectively. The CART trees are highly splitted due to the

parameter tuning step, yet with ∼10% mean error their accuracy

is acceptable. Across the four models, the mean of the 95th

percentile of the prediction error is 20.89%, 24.32%, and

27.48% for MARS, Cubist, and CART, respectively.

Optimization Improvement. Finally, to evaluate the improve-

ments in model accuracy achieved through our regression

optimization step, we compare the accuracy of the models

when using the optimized regression parameters vs. the

standard parameters, respectively. We evaluate the performance

prediction error for each model with 100 completely random

configurations within the configured ranges.

Overall, especially MARS and CART benefit from the

parameter optimization exhibiting an average error reduction

of 66.30% and 74.08%, respectively. The error reduction for

Cubist is 15.7%. We evaluate the statistical significance of the

optimization results in a paired t-test. Here, the p-value of

both MARS and CART is less than 2.2e−16 and the p-value

of Cubist is 3.39e−4, thus, confirming that the optimization is

statistically significant.

C. Modeling Mixed Applications

Setup. In our second case study, we use Filebench to emulate

a composite application workload. We use the configuration

shown in Table II emulating a mail server workload consisting

of mixed file system operations, such as file creation and

deletion as well as whole file reads and append operations

of random size. We analyze all combinations of varying the

number of clients (threads), the number of files, and the mean

file sizes as summarized in Table II, leading to a total of 576

measurement configurations. For each configuration, we use

a one minute warm up phase and a five minute measurement

phase. During the latter, the benchmark obtains ∼980 000
read and append samples on average and between ∼825 000
and 1 100 000 samples depending on the configuration, while

the mean response times of read and append requests are in

[0.36 ms, 2.74 ms] and [0.40 ms, 1.70 ms], respectively, and

the throughputs of read and append requests are in [5.95 MB/s,

62.95 MB/s] and [5.60 MB/s, 7.60 MB/s], respectively.

Performance Models. For each regression technique we

create four different models: A read response time model (RTr),

an append response time model (RTa), a read throughput model

(TPr), and an append throughput model (TPa).

TABLE II: Filebench Experimental Setup Configuration

Workload type Mail server workload

Threads 16(∗), 32, 48, 64, 80, 96

Files 1000(∗), 5000, 10000, 20000, 30000, 40000, 50000,
60000, 70000, 80000, 90000, 100000

Mean file size 4 KB, 16 KB(∗), 32 KB, 48 KB, 64 KB, 96 KB, 128 KB,
192 KB

(∗) default value

MARS CART Cubist

0
10
20
30
40
50

0
10
20
30
40
50

M
ean

9
5

th
p

ercen
tile

RT r
RT a

TP r TP a RT r
RT a

TP r TP a RT r
RT a

TP r TP a

R
el

at
iv

e
E

rr
o

r
(%

)

Fig. 4: Prediction Quality (Case Study II)

Prediction Accuracy. We evaluate 100 configuration scenarios

with parameter values chosen randomly within the configured

ranges. For each scenario, we compare the model predictions

with measurements on the real system.
Figure 4 shows the mean and the 95th percentile of the

relative error for the various models. Overall, the models

perform very well and especially MARS exhibits excellent

performance prediction accuracy with less than 4% mean error.

The Cubist and CART models are also very accurate with ∼7%
and 8% mean prediction error, respectively. Across the four

models, the mean of the 95th percentile of the prediction error

is very good for MARS with 9.66%, while it is 20.78% and

20.88% for Cubist and CART, respectively.
Optimization Improvement. We evaluate the improvements in

model accuracy achieved through our regression optimization

step, similar as in the previous case study. Overall, the

optimization reduces the prediction error by 4.2%, 27.3%, and

8.7% for MARS, CART, and Cubist, repectively. In a paired
t-test, the p-value of MARS, CART, and Cubist is 5.26e−4,

9.63e−14, and 2.19e−3, respectively. Thus, the optimization is

again statistically significant.

D. Modeling Performance Interference
Setup. In our third case study, we analyze the performance

interference among VMs, i.e., the performance of a workload

in a given VM as a function of the workload running in

a co-located VM. We explicitly focus on machines with

a constant and equal workload intensity, but with different

workload types, e.g., read- or write-intensive workload. Since

I/O performance isolation in virtualized environments is widely

an open challenge, varying the workload intensity would lead

to obvious performance interference. For the measurements,

we use both FFSB as well as Filebench emulating a file server

workload consisting of mixed file system operations, such as

file creation and deletion as well as whole file reads, whole file

writes, and append operations of random size. The benchmarks

run in respective virtual machines with the configurations

91

chosen representatively and shown in Table III. We use all

combinations shown leading to a total of 200 measurement

configurations. We use a one minute warm up phase and a five

minute measurement phase.

A first indication of the performance interference is the

number of read, append, and write operations of the file server

workload emulated with Filebench in VM1. Depending on

the configuration of FFSB in VM2, the number of operations

in VM1 varies between ∼375 000 and 700 000 with a mean

of ∼550 000 operations, while the number of operations in

VM2 varies between ∼420 000 and 3 100 000 with a mean of
∼1 300 000 operations. For VM1, the mean response times of

read, append, and write requests are in [13.08 ms, 34.08 ms],

[11.63 ms, 32.12 ms], and [17.90 ms, 52.81 ms], respectively,

and the throughputs of read, append, and write requests are

in [54.80 MB/s, 108.30 MB/s], [3.40 MB/s, 6.20 MB/s], and

[55.30 MB/s, 109.10 MB/s], respectively, depending on the

configuration. For VM2, the mean response times of read

and write requests are in [4.34 ms, 26.75 ms] and [7.45 ms,

37.59 ms], respectively, and the throughputs of read and write

requests are in [1.38 MB/s, 218.00 MB/s] and [2.21 MB/s,

95.20 MB/s], respectively, depending on the configuration.

Performance Models. To model the interference effects, for

each regression technique, we create a total of 10 models:

For VM1, we use the configuration in VM2 as independent

variables and create a read response time model (RT1
r), an

append response time model (RT1
a), a write response time

model (RT1
w), a read throughput model (TP1

r), an append

throughput model (TP1
a), and a write throughput model (TP1

w).

For VM2, we do not need to use the configuration in VM1 as

independent variables explicitly as the configuration in VM1

remains constant in this case study. We create a read response

time model (RT2
r), a write response time model (RT2

w), a read

throughput model (TP2
r), and a write throughput model (TP2

w)

using the configuration in VM2 as independent variables.

Prediction Accuracy. We evaluate 100 configuration scenarios

with parameter values chosen randomly within the configured

ranges. We use these parameter values as configuration for

the FFSB benchmark and predict both the performance of the

FFSB benchmark and the performance interference on the co-

located VM running Filebench. For each scenario, we compare

the model predictions with measurements on the real system.

Figure 5 and 6 show the mean and the 95th percentile of the

relative error for the various models. Especially interesting is

the prediction error indicated in Figure 5 showing how the mod-

els are able to predict very accurately how different workloads,

e.g., write-intensive or read-intensive, affect the performance

on the co-located virtual machine. This is significant since, as

mentioned above, the response time spreads between 261% and

295% for the operations depending on the co-located workload.

Overall, the models perform significantly well for both virtual

machines. As before, MARS exhibits the best performance

prediction accuracy with ∼2.1% and 5.0% mean prediction

error for VM1 and VM2, respectively. The Cubist models are

also very accurate with ∼2.6% and 10.0% mean prediction

error for VM1 and VM2, respectively. Finally, CART models

TABLE III: Hybrid Experimental Setup Configuration

Filebench Workload Parameters @VM1

Workload type File server workload

Threads 50(∗)

Files 10000(∗)

Mean file size 128 KB(∗)

FFSB Workload Parameters @VM2

Threads 50
File set size 1 GB, 2 GB, 5 GB, 10 GB
Request size 4 KB, 8 KB, 16 KB, 32 KB, 64 KB
Access pattern random, sequential
Read percentage 10%, 30%, 50%, 70%, 90%

(∗) default value

MARS CART Cubist

0

5

10

15

20

0

5

10

15

20

M
ean

9
5

th
p

ercen
tile

RT
1
r
RT
1
a
RT
1
w
TP
1
r
TP
1
a
TP
1
w

RT
1
r
RT
1
a
RT
1
w
TP
1
r
TP
1
a
TP
1
w

RT
1
r
RT
1
a
RT
1
w
TP
1
r
TP
1
a
TP
1
w

R
el

at
iv

e
E

rr
o

r
(%

)
Fig. 5: Prediction Quality VM1 (Case Study III)

MARS CART Cubist

0

20

40

60

0

20

40

60

M
ean

9
5

th
p

ercen
tile

RT
2
r
RT
2
w

TP
2
r
TP
2
w

RT
2
r
RT
2
w

TP
2
r
TP
2
w

RT
2
r
RT
2
w

TP
2
r
TP
2
w

R
el

at
iv

e
E

rr
o

r
(%

)

Fig. 6: Prediction Quality VM2 (Case Study III)

exhibit the highest error in this case study with ∼5.2% and

13.5% mean prediction error for VM1 and VM2, respectively.

For VM1, the mean of the 95th percentile of the prediction error

across the six models is very good for MARS and Cubist with

8.39% and 9.99%, respectively, while it is 15.14% for CART.

For VM2, the mean of the 95th percentile of the prediction

error across the four models is 16.15%, 27.39%, and 34.00%

for MARS, Cubist, and CART, respectively.

Optimization Improvement. We again evaluate the improve-

ments in model accuracy achieved through our regression

optimization step, similar as in the previous case studies. In

summary, the optimization improvement is between 5.0% and

32.3% and the p-value is at most 1.46e−3 indicating that the

optimization is statistically significant.

V. RELATED WORK

The work closely related to the approach presented in this paper

can be classified into two groups. The first group is focused

on modeling storage performance in virtualized environments.

Here, Kraft et al. [2] present two approaches based on queueing

92

theory to predict the I/O performance of consolidated virtual

machines. Their first, trace-based approach simulates the

consolidation of homogeneous workloads. The environment

is modeled as a single queue with multiple servers having

service times fitted to a Markovian Arrival Process (MAP).

In their second approach, they predict storage performance in

consolidation scenarios with heterogeneous workloads. They

create linear estimators based on mean value analysis (MVA).

Furthermore, they create a closed queueing network model, also

with service times fitted to a MAP. In [14], Ahmad et al. analyze

the I/O performance in VMware’s ESX Server virtualization.

They compare virtual to native performance using benchmarks.

They further create mathematical models for the virtualization

overhead. The models are used for I/O throughput degradation

predictions. By applying different machine learning techniques,

Kundu et al. [15] use artificial neural networks and support

vector machines for dynamic capacity planning in virtualized

environments.

The second group of related work analyzes I/O performance

interference effects in virtualized environments. Closest to

our work, Chiang et al. [16] use linear and second degree

polynomials to model I/O performance interference. They

use the models for scheduling algorithms to manage task

assignments in virtualized environments. As input in their

model, they use read and write request arrival rates as well

as local and global CPU utilization. However, they do not

distinguish between request sizes or sequential and random

requests, for instance. Our measurements have shown that such

factors have a significant impact on I/O performance. In [17],

Yang et al. present a framework that uses a set of pre-defined

workloads to identify characteristics of the hypervisor I/O

scheduler. Furthermore, they show how this information can

be exploited to deteriorate the I/O performance of co-located

virtual machines. To analyze performance interference also

across resources, Koh et al. [18] manually run CPU-bound and

I/O-bound benchmarks. They develop mathematical models

for prediction of normalized performance compared to the

isolated performance of the benchmark. In an experimental

study, Pu et al. [19] analyze CPU and network I/O performance

interference in a Xen-based environment. They conclude that

the least performance degradation occurs for workloads with

different resource demands, i.e., CPU and network I/O demand

or mixing small with large network demands.

VI. CONCLUSION

We presented a fully automated approach to systematically

create and optimize I/O performance models of virtualized

storage systems based on three statistical regression techniques.

We demonstrated the benefit of our approach in three case

studies creating performance models with two different I/O

benchmarks. The case studies comprised models of general

I/O performance-influencing factors, of mixed applications

workloads, and of I/O performance interference effects in mixed

virtualized environments. The case studies were conducted

in a real-world environment based on IBM System z and

IBM DS8700 server hardware. Overall, we effectively created

performance models with excellent prediction accuracy. Inter-

estingly, of the three considered regression techniques, MARS

performed better than CART and Cubist in every scenario. The

mean prediction error of MARS was between 2.1% and 7%
in the case studies. This fact, however, was also due to the

regression parameter optimization approach reducing the error

of MARS by up to 66.3%. Moreover, the regression parameter

optimization approach reduced the prediction error of every

considered technique with statistical significance in every case

study and every regression technique considered in the paper.

Acknowledgments This work was supported by the German Research Foundation
(DFG) under grant No. RE 1674/5-1 and KO 3445/6-1, the Czech Science Foundation
(project GACR P202/10/J042), and the German Federal Ministry of Economics and
Energy (BMWI), grant No. 01MD11005 (PeerEnergyCloud). We especially thank
the Informatics Innovation Center (IIC) – http://www.iic.kit.edu/ – for
providing the system environment of the IBM System z and the IBM DS8700.

REFERENCES

[1] S. Oliveira, K. Furlinger, and D. Kranzlmuller, “Trends in Computation,
Communication and Storage and the Consequences for Data-intensive
Science,” in HPCC-ICESS’12.

[2] S. Kraft, G. Casale, D. Krishnamurthy, D. Greer, and P. Kilpatrick,
“Performance Models of Storage Contention in Cloud Environments,”
SoSyM, 2012.

[3] Q. Noorshams, K. Rostami, S. Kounev, P. Tůma, and R. Reussner, “I/O
Performance Modeling of Virtualized Storage Systems,” in MASCOTS

’13.
[4] Q. Noorshams, D. Bruhn, S. Kounev, and R. Reussner, “Predictive

Performance Modeling of Virtualized Storage Systems using Optimized
Statistical Regression Techniques,” in ICPE ’13.

[5] Q. Noorshams, S. Kounev, and R. Reussner, “Experimental Evaluation
of the Performance-Influencing Factors of Virtualized Storage Systems,”
in EPEW ’12.

[6] J. H. Friedman, “Multivariate Adaptive Regression Splines,” Annals of
Statistics, vol. 19, no. 1, pp. 1–141, 1991.

[7] L. Breiman, J. Friedman, C. J. Stone, and R. Olshen, Classification
and Regression Trees, ser. The Wadsworth and Brooks-Cole statistics-
probability series. Chapman & Hall, 1984.

[8] RuleQuest Research Pty Ltd, “Data Mining with Cubist,” http://rulequest.
com/cubist-info.html, 2012, last accessed: Jan 2014.

[9] M. Kuhn, S. Witson, C. Keefer, and N. Coulter, “Cubist Models
for Regression,” http://cran.r-project.org/web/packages/Cubist/vignettes/
cubist.pdf, 2012, last accessed: Jan 2014.

[10] J. R. Quinlan, “Learning with Continuous Classes,” in AI ’92. World
Scientific.

[11] R Core Team, R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing, Vienna, Austria, 2013. [Online].
Available: http://www.R-project.org

[12] B. Dufrasne, W. Bauer, B. Careaga, J. Myyrrylainen, A. Rainero, and
P. Usong, “IBM System Storage DS8700 Architecture and Implementa-
tion,” http://www.redbooks.ibm.com/abstracts/sg248786.html, 2010.

[13] X. Ling, S. Ibrahim, H. Jin, S. Wu, and T. Songqiao, “Exploiting Spatial
Locality to Improve Disk Efficiency in Virtualized Environments,” in
MASCOTS ’13.

[14] I. Ahmad, J. Anderson, A. Holler, R. Kambo, and V. Makhija, “An
Analysis of Disk Performance in VMware ESX Server Virtual Machines,”
in WWC-6, 2003.

[15] S. Kundu, R. Rangaswami, A. Gulati, M. Zhao, and K. Dutta, “Modeling
Virtualized Applications using Machine Learning Techniques,” in VEE
’12.

[16] R. C. Chiang and H. H. Huang, “TRACON: Interference-aware Schedul-
ing for Data-intensive Applications in Virtualized Environments,” in SC

’11.
[17] Z. Yang, H. Fang, Y. Wu, C. Li, B. Zhao, and H. Huang, “Under-

standing the Effects of Hypervisor I/O Scheduling for Virtual Machine
Performance Interference,” in CloudCom ’12.

[18] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu, “An
Analysis of Performance Interference Effects in Virtual Environments,”
in ISPASS ’07.

[19] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, and C. Pu, “Understand-
ing Performance Interference of I/O Workload in Virtualized Cloud
Environments,” in CLOUD ’10.

93

