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Abstract. Software performance engineering provides techniques to analyze and
predict the performance (e.g., response time or resource utilization) of software
systems to avoid implementations with insufficient performance. These tech-
niques operate on models of software, often at an architectural level, to enable
early, design-time predictions for evaluating design alternatives. Current software
performance engineering approaches allow the prediction of performance at de-
sign time, but often provide cryptic results (e.g., lengths of queues). These predic-
tion results can be hardly mapped back to the software architecture by humans,
making it hard to derive the right design decisions. In this paper, we integrate
software cartography (a map technique) with software performance engineering
to overcome the limited interpretability of raw performance prediction results.
Our approach is based on model transformations and a general software visu-
alization approach. It provides an intuitive mapping of prediction results to the
software architecture which simplifies design decisions. We successfully evalu-
ated our approach in a quasi experiment involving 41 participants by comparing
the correctness of performance-improving design decisions and participants’ time
effort using our novel approach to an existing software performance visualization.

1 Introduction

Performance is a complex and cross-cutting property of every software system. If per-
formance targets (e.g., maximum response times) are not met, a redesign or even a
reimplementation of the system is needed, which leads to significant costs. Model-
based software performance prediction approaches (cf. [1, 31]) estimate the perfor-
mance of software architectures1 at design time, before fully implementing them. These
approaches are also referred to as Software Performance Engineering (SPE, [26]), and
several implementations of it exist. Making the correct design decisions using SPE re-
quires proper understanding and interpretation of the prediction results.

1 We will use the term architecture to capture static structure, behavior, and deployment of a
software.



Nevertheless, many companies do not use SPE in software development [4]. Wood-
side et al. [31] highlight the limited interpretability in current SPE approaches: “Better
methods and tools for interpreting the results and diagnosing performance problems are
a future goal”. Mapping performance prediction results back to the analyzed software
architecture is difficult because the underlying concept’s abstract entities (e.g., places in
Petri Nets [15] or queue lengths in Layered Queuing Networks [8, 23]) are not directly
linked to a software architecture. Also, performance prediction results are insufficiently
aggregated so that performance data is at a lower abstraction level than architectural el-
ements (e.g. only resource demands of single steps of behavior specifications are avail-
able, while reallocation decisions require resource demands at the component level).
Both aspects result in high time demands for the identification of performance prob-
lems like bottlenecks. For example, the SPE tool of [26] presents the resource demands
of single steps in the behavior specification (”software execution graph”) as well as the
overall demand of whole use cases or parts thereof (”scenarios”). Components are not
reflected in the models. Thus, for decisions like reallocation, one needs to manually
collect the results for all scenarios of the component.

The contribution of this paper is a novel integration of the approaches of software
performance engineering (SPE) and software cartography to support design decisions
by performance result visualizations at the level of software architectures. For SPE, our
approach uses Palladio [2], a representative state-of-the-art model-based performance
prediction approach. It is going to be integrated with software cartography [29], a scien-
tific discipline which reuses cartographic techniques for visualizing large applications,
i.e. software systems and their interconnections. Such a visualization technique is nec-
essary as large applications form highly complex and interdependent systems, which
are not easy to comprehend without graphical support. The visualizations are designed
according to the viewpoints of individual stakeholders2 to meet requirements of user
convenience and usability.

The targeted benefits of the presented approach are a more intuitive result interpre-
tation, a better usability, and thus the speedup of decision processes. These benefits are
achieved by assisting the software architect through visualization of performance pre-
diction results at an architectural level, which allows to map performance prediction
results to the elements of an architectural software model (cf. Fig. 2 / 5). Also, multiple
information layers are available to ease trade-off decisions and to help in identifying
crosscutting design impacts. Our solution overcomes the limited interpretability of per-
formance evaluation results as provided by Petri Nets, or Layered Queuing Networks.
It transforms an architectural model, a prediction result model, and graph description
models into a software architecture visualization which includes prediction results. The
generality of our visualization approach allows different kinds of viewpoints.

We successfully evaluated the approach in a quasi experiment involving both expe-
rienced software performance analysts and less experienced computer science students.
Our experiment shows an increased precision and effectiveness of design decisions pro-
cesses, making it more likely to choose the right design options. The approach is appli-
cable also for users with little experience in SPE.

2 The terms stakeholder and viewpoint are used here in accordance to their definitions in [13].



In the remainder of this paper, Section 2 surveys related work, Section 3 describes
the foundations of software cartography and visualizations while Section 4 introduces
SPE. In Section 5, we present our novel integrated visualization approach, which is
evaluated in Section 6 in a quasi experiment, before Section 7 concludes the paper.

2 Related Work

Model-based software performance prediction is surveyed by Balsamo et al. in [1].
In this area, the existing approaches either support (i) result aggregation or (ii) links
to the software architecture, but no approach integrates both aspects, as described in
the following. The commercial SPE-ED [26] tool by Smith et al. highlights critical
actions in a behavioral model and highly utilized servers, and thus allows fast result
interpretation for software architects. Still, there is no support in SPE-ED for high-level
architectural constructs like composite components. In other commercial SPE tools like
“Performance Optimizer” or “Capacity Manager” from Hyperformix [12], visualiza-
tions are mostly table-based or bar charts to illustrate impacts of changing deployment,
but the visualizations are not connected to models of the software architecture. For Hy-
performix products, only little information on visualization techniques is available, and
the software itself is not freely available or affordable for universities to perform case
studies or experiments. Of the approaches surveyed in [1], those that do link perfor-
mance results back to architectural elements of the design model, like [30, 14, 5], still
do not provide aggregated information on an architectural level, e.g. for components.
The same is also true for similar newer approaches such as UML-Ψ [17].

Software model visualization in the field of software engineering is dominated
by the unified modeling language (UML) [21], which provides the common basis for
modeling single software systems. For performance modelling, the UML MARTE pro-
file [20] has been suggested, which introduces performance-related tagged values for
UML constructs. However, while the tagged values can be displayed in all UML dia-
gram types, they do not provide a specialized visualization of the performance results
(e.g. resource utilization visualization) to support fast insight and design decisions (e.g.
reallocation of components to spread the load). Furthermore, the creation of different
viewpoints according to the concerns of various stakeholders is not supported in UML
(cf. [19]).

Visualization approaches of arbitrary models like GMF (Graphical Modeling
Framework [6]) support the creation of graphical notations for arbitrary models (e.g.,
software or performance models), but put a special emphasis on creating graphical edi-
tors. In GMF, the user is granted a maximum amount of flexibility regarding the layout
of visualizations – means for specifying layout rules are limited in the GMF approach.
Also, GMF implies that the visualization of a specific concept uses a distinct unique
type of visualization – to add other graphical elements for the visualization, GMF needs
to create a new editor.

Other software performance visualization approaches [16, 11, 32, 25, 33] have
already been proposed and they all support stakeholders in making design decisions
to improve software performance. However, none of theses approaches supports archi-
tectural design decisions by visualizations. Instead, they usually focus on parallel pro-



grams and often require executable implementations to monitor the software behaviour.
All of these approaches have in common that their visualization is not empirically evalu-
ated. An additional limitation is that their outdated GUI techniques cannot be integrated
into modern IDEs like Eclipse. General performance evaluation tools (e.g. profilers or
performance monitors) are also implementation-centric and must execute the finished
application.

3 Software Cartography

Conventional cartography (making geographical maps; see e.g. [10]) provides tech-
niques well-suited for presenting complex information to a wide variety of people from
different educational backgrounds. These techniques range from color-coding accord-
ing to property values to the separation of the base map and layered additions.

Software cartography [29] re-uses cartographic techniques for visualitions of com-
plex interconnected systems, called software maps. These maps are stakeholder-specific
visualizations, especially designed as means for management support. In analogy to ur-
ban planning, a city and a software application landscape share a number of character-
istics [18]:

– They form networked, open systems with autonomous and active constituents.
– They are constantly evolving and (mostly) have no designated end of lifetime.
– Many people are involved as stakeholders, with different educational backgrounds.
– Different stakeholders have different concerns regarding the system, such that a

balance of interests has to be achieved.

Especially the people-centric characteristics motivate the idea of using cartographic
techniques for visualizing systems. Existing stakeholder-specific graphical notations
for certain aspects, e.g. the diagram types introduced in UML for the software develop-
ment process, are not widely known outside the respective domain – neither business
architects nor system administrators are likely to understand UML sufficiently. Map-
like visualization, although having no such well-defined semantics, can be more easily
understood by the various stakeholders.

One might argue that software maps do not provide a well-defined semantics, as the
same type of symbol (e.g. a rectangle) might have different meanings in different visu-
alizations (i.e. software maps). While this is true, the meaning of a specific symbol on
one software map is clarified using another cartographic technique, the legend. A leg-
end in conventional maps provides textual information on the meaning of the symbols
used in the map. Such information is also contained in a software map legend, which
also comprises information on the meaning of (relative) positioning, as different maps
can employ different positioning rules to express certain underlying information.

Relative positioning rules are especially of interest in the context of the base map,
leading to a distinction between different types of base maps – the so-called software
map types. There are three distinct basic types, of which one – a cluster map – is shown
in Figure 1 as an example. The cluster map uses the principle of clustering (i.e. nesting
of symbols into other symbols) to visualize relationships, preferably hierarchical ones.
On this map, a distance measure between the visualized concepts emerges from the



Fig. 1. Cluster map utilizing the layering principle

assignment of the concepts to parenting clusters – concepts in the same cluster are
closer to each other than concepts in different clusters. Wittenburg [29] provides a more
in-depth introduction to the software map types.

Regarding the involvement of various stakeholders, as for example in the context of
performance predictions, the utilization of the so-called layering principle from carto-
graphy is especially beneficial. This concept allows the setup of a base map containing
the logical constituents of the system under consideration, further utilizing relative po-
sitioning of symbols to represent certain types of associations as spatial relationships,
which can be easily perceived. Additional information, only necessary for a certain
stakeholder group, can be presented on an additional layer, which can be displayed or
hidden on demand. Figure 1 illustrates this principle. In the context of software per-
formance predictions, especially the layers showing measures and interconnections are
of interest. The measures layer contains pie charts showing certain properties of the
system under consideration on an aggregated, e.g. business-relevant, level. The actual
interconnections, from which the properties of the system emerge, are contained in the
interconnections layer.

In this setting, a stakeholder from a business group can identify a certain system
based on the pie chart aggregation. Then the layer containing the interconnections can
be overlaid to achieve a link to underlying technical information. By the utilization of
the layering principle, it is ensured that the software system under consideration does
not change its graphical position between the different viewpoints, which would not
necessarily be the case, if stakeholder-specific visual notations were employed.

4 Software Performance Prediction and Visualization

It is significantly more expensive to deal with performance problems in an implemented
software system than to prevent performance problems before they occur [26]. Thus, it
is advantageous to detect performance deficiencies of a planned software system during
the design phase. As actual performance measurements of the system are not possible
during the design phase, the performance must be estimated (predicted) based on infor-
mation available at that moment.

Performance prediction is also needed in other scenarios where measurements are
impossible or cost too much effort. For example, to answer sizing questions on the



server to be used in relation to an expected workload, performance prediction can help
to evaluate and to make design decisions (“is it more effective to buy server X or to
replace components C and D with ones having higher performance, but remaining on
an old server Y?”).

To answer such question on scalability, sizing etc., Software Performance Engineer-
ing (SPE [28]) is a systematic and well-studied approach for early estimation and pre-
diction of software performance. As input, SPE approaches take a system’s usage model
(i.e. workload and expected user behavior) and an architectural model (e.g. in UML)
which includes a static part (components and connectors), a behavioral part (e.g., a
strong abstraction of control and data flow), the resource environment (available server
and networks), and component allocation (a mapping between component and resource
environment). SPE is used to assess the feasibility of given performance requirements;
achieving the optimal performance is usually not an objective because of costs.
Visualization in SPE. The performance of an executed software application depends
on its usage of resources (e.g. CPU, HDD, network). Resource contention occurs when
competing requests to a shared resource have to wait. Resource contention leads to
a significant performance impact, which must be accounted for during performance
prediction. After transforming the architectural models into analysis models such as
Queueing Networks, SPE approaches analyze performance by employing simulation
or analytical solutions. In the analysis, the resources maintain queues, with resource
requests waiting if the resource is busy. Simulation or analytical solution of the modeled
resources allows to estimate performance metrics such as utilization, waiting time in the
queue, and response time. The length of such a queue allows to draw conclusions about
resource utilization over time, and to identify which resources are bottlenecks. To “feed
back” SPE results into their architecture, SPE users must be able to map SPE results
to the architectural models – but in practice, there is a significant gap between (usually
formal) analysis models of SPE (such as Queuing Networks and Petri Nets), and the
architectural models.

Furthermore, the results returned by SPE are often aggregated: the response time
for a coarse-grained application service does not allow to easily conclude which of the
used components is consuming the largest amount of CPU power. Similarly, the textual
output that reports the usage percentages of several CPUs still means that the SPE user
must manually map these results to the (usually graphical) deployment model. Finally,
to compare different design options, the respective SPE prediction results for them need
to be visualized so that the SPE user can comfortably compare them in a unified way.
Visualization Requirements. Thus, results that need to be visualized are not only “end-
user” performance metrics (e.g. service response time), but also “internal” metrics, such
as the utilization of a resource. Visualization should allow to detect performance prob-
lems and, based on this, to make the right design decisions. To increase software ar-
chitects’ effectiveness and correctness when designing with respect to performance, the
visualization must be easy to understand. Apart from presenting single, isolated results,
visualization of performance prediction results should consider architecture relation,
highlighting, correlation, and decomposition:

– The visualization should offer the software architect the same components as in the
design phase. Otherwise, the back-mapping of performance results gets ambiguous,



error-prone and as our studies in Section 6 show, it leads to less correct and more
time-consuming design decisions. Consequently, results must be presented at the
architectural level.

– To make it easier to match the performance prediction results and the architecture
models, the aggregated results should be an overlay over the respective architecture
models; an overlay can be textual (e.g., a tooltip showing the median utilization),
or graphical (e.g., specific coloring of bottleneck resources).

– Visualizations that use multiple data dimensions (e.g., response times vs. more
powerful resources) must be supported to allow trade-off analyses (e.g., cost of
introducing cache vs. higher worst-case latency), and evaluation of cross-cutting
concerns (e.g., enabling time-consuming security features).

– Multiple viewpoints (e.g., static architecture viewpoint vs. deployment viewpoint)
of the same architectural prediction results should enable the stakeholder to delve
into details. The software architect can then analyze an architecture with different
focuses.

5 Integrated Approach

In our approach, we bring together visualizations from software cartography and per-
formance predictions at the level of software architecture. This combination promises
improved understanding of performance issues and the potential to easily optimize soft-
ware design.

Palladio [2] is a model-based state-of-the-art SPE approach that features an inte-
grated, Eclipse-based tool chain for modeling and evaluating software architectures.
Palladio will be used in the quasi experiment (cf. [24, p. 4]) of our approach because we
intend to study whether its visualization techniques must be enhanced, and which ben-
efits the enhancements would provide. Internally, Palladio uses Queueing Networks for
simulation-based performance prediction. Application models in Palladio are built on
the Palladio Component Metamodel (PCM), following the paradigms of model-driven
software development (MDSD).

In Palladio, raw performance prediction results are stored in a database. In the orig-
inal visualization, data is basically accumulated to depict pie charts, bar charts/histo-
grams, and line charts. However, the original visualization results are separated from
the architecture model (the prediction results were simply labeled with service names,
component names, and resource names). For example, the response time of a service is
visualized as a general probability distribution of response times (cf. Fig. 2).

5.1 Chosen Visualizations in the new Approach

With the new, extended visualization, software architecture and performance prediction
results are brought together in the visualization. For that, a new decorator model [9] an-
notates elements of a PCM model instance with prediction results. The decorator model
contains prediction results for each component, server node, and network connection.

To realize the requirements listed at the end of section 4, we used four basic view-
points to visualize performance results (these viewpoints are used in the evaluation



Fig. 2. Original result visualization in Palladio: Histogram of a general distribution function of
service’s response time and a pie chart showing the utilization of a resource (top right)

discussed in Section 6, where the actual visualizations are also shown; cf. Fig. 5) in our
approach.

In the black-box resource environment viewpoint, server nodes and network con-
nections are visualized together with their utilization (i.e. percentage of busy and idle
times). In the visualization, strong network connections are thicker than slower ones.
For the utilization of a server node, we use the weighted average of the utilization of
its inner resources of one type (CPU, HDD, ...), weighting with their processing rate.
Thus, we obtain a measure relative to the overall processing rate of all resources of this
type. For passive resources such as thread pools, the utilization is analogously deter-
mined based on their capacity. If the server contains resources of different types (CPUs,
HDDs, and thread pools), the utilization of the resource type with the highest average
utilization is used, to allow fast bottleneck recognition.

In the white-box resource environment viewpoint, the first viewpoint is enhanced
by visualizing server nodes and nested hardware resources (such as CPUs, hard disks,
network connections, or thread pools) together with their respective utilization. Perfor-
mance metrics here also include the utilization per resource (e.g. CPU or HDD) of a
server node. In this viewpoint, also the average wait time (time for which requests are
waiting in a queue; relative to the wait time of all resources in the model) and the av-
erage demanded absolute time per resource can be visualized. The distinction between
server nodes and resources allows users to delve into details. If a server has multiple
CPUs, we can detect that, for example, only one CPU is under heavy load, while others
are idle. For scenarios in which scheduling can be influenced or where different types
of CPUs are used, one can then try to shift computations to another CPU.

In the white-box allocation viewpoint, the deployment of software components
into the execution environment is included into the visualization. In addition to server
nodes and network connections between them, also all components for each server, the
connection of components, their individual resource demands as well as the absolute



Fig. 3. Basic principle behind the Syca transformation approach to visualization generation

response time are visualized. The resource demand is shown relative to the summed-up
resource demands of all components on this server node (for composite components,
also the internal resource demand is accumulated).

In the software component viewpoint, only software components, interfaces, and
connectors between components are displayed. For each component the absolute re-
sponse time is displayed.

Performance prediction result data is strongly aggregated with the intention to sup-
port understandability and to avoid overwhelming users with information. If the aggre-
gated data is not sufficient, software architects and performance analysts can still delve
into details using the original Palladio visualization, which provides access to specific
results like the response time of individual services of components.

To ease the interpretation and speed of recognition, coloring indicates potential bot-
tlenecks or critical architectural elements. Components with relative performance met-
rics (e.g., utilization) with more than 75% are colored red; while for resources, starting
from 75% orange and starting from 85% red is used. Beyond coloring, also multiple
data layers can be visualized for the same topology (same server nodes, network con-
nections, and component allocation). In our approach, we use the data layers to visualize
different usage scenarios to allow the estimation of impact for different usage scenar-
ios (e.g., resource utilization with few vs. many users). Compared to the visualization
requirements from Section 4, our visualization approach provides a) a relation between
architecture and performance prediction results, b) highlights critical architectural ele-
ments, c) eases correlation analysis through multiple layers, and d) enables decomposi-
tion by multiple viewpoints at different levels of detail. We will detail on visualizations
in the evaluation discussed in Section 6.



5.2 Applying the Software Cartography Approach to Visualizing Performance
Information

Software maps, as introduced in Section 3, are consistent visualizations of information,
i.e. a viewpoint on the information utilizing cartographic means. As creating these visu-
alizations manually is both a time-consuming and error-prone process, an approach for
generating software maps from input information is presented in [7]. This approach is
based on object-oriented models of both the information and the visualization as well as
a model-to-model transformation, the so-called Syca transformation. The core concepts
of the approach are sketched in Figure 3 and lay the basis for the integration explained
subsequently. Prior to details on the integration, the core models of the visualization
generation approach are introduced:

Information model This (meta) model sets up the language for describing the model-
ing subject, i.e. it introduces the core concepts, which are used to create a model
of the subject’s reality. In the context of software performance prediction, the in-
formation model defines concepts such as components, connectors, and attributes
such as average utilization. The elements contained in an object-oriented informa-
tion model are classes, attributes, and relationships.

Semantic model The semantic model contains instance data modeled according to the
respective information model, i.e. it contains information objects. In the context
of software performance prediction, these objects are instances of components and
interconnections, having assigned values for the attributes.

Visualization model This (meta) model defines graphical concepts, either visual ones
– so called map symbols – or visualization rules, which describe graphical relation-
ships between the symbols. These rules can be used to specify relative positionings,
size, or the overall appearance of symbols at the level of graphical concepts without
having to supply all details of positioning or layout.

Symbolic model This model contains visualization concept instances, i.e. map sym-
bols and visualization rules, modeled according to the respective visualization model.
By assigning visualization rules to the symbols, the relative positioning is deter-
mined, although no absolute positions are specified.

All aforementioned models are described using the Meta Object Facility (MOF) [22].
This language therefore provides the common meta model for both information model
and visualization model.

The common meta model further lays the basis for expressing a mapping from in-
formation model to visualization model concepts in terms of a model-to-model trans-
formation. This Syca transformation can be used to specify how a concept from the in-
formation model, e.g. a component, should be visualized, e.g. as a rectangle. Executing
the thus specified transformation, instances from the semantic model can be mapped
to instances in a symbolic model, which together describe a visualization. The trans-
formed symbolic model is subsequently handed over to a layouting component, which
computes the actual positions and sizes of the symbols in accordance with the respective
rules. For details on the layouting mechanism, see e.g. [7].

The above approach can handle arbitrary object-oriented information models and
corresponding instance data. Therefore, it is possible to apply it on the performance



prediction data (Result Decorator) as computed by the Palladio approach, which is also
represented in a decorated object-oriented model. The basic make-up of a respective
integration is sketched in Figure 4. Selected technical details of the integration are de-
scribed below.

Palladio 
Model:

Architecture

Palladio
Performance 

Prediction

Result 
Decorator

Data 
aggregation

Syca 
transformation

Symbolic 
Model

decorates

Raw 
Results

Layouter Architecture
Visualization

semantic model

information model

Palladio Meta-
Model:

Architecture

conforms to

Fig. 4. Processing of models and prediction results

The model-transformation based approach for visualization generation has been im-
plemented in a prototypic Eclipse based tool, the SoCaTool [3]. It allows the technical
integration to the Palladio Bench, which is also realized based on the Eclipse platform.
In this integration, the decorated results from the performance prediction are read as se-
mantic models into the SoCaTool, which subsequently hands the data over to the Syca
transformation component. From this, a generated symbolic model is passed to the lay-
outer, which finally computes the absolute positioning of the symbols and thus creates a
visualization. Central cornerstone of the technical integration is hence the realization of
an appropriate Syca transformation. This transformation is built on the data contained
in the decorated resource model.

For this paper, the existing Palladio and SoCaTool have been extended by decorator
support, the Result Decorator itself, and the new Syca transformation. Screenshots of
the realized visualization approach are available online3.

6 Evaluation

To evaluate the chosen visualization of performance results, we conducted a quasi ex-
periment involving students and faculty members, all from the field of computer sci-
ence. Only about half of the faculty members was familiar with Palladio.

In the quasi experiment, we investigated four research questions:

Q1: Can participants make correct design decisions based on the visualization? To do
so, the participants need to correctly identify performance bottlenecks and be able
to solve performance issues (changing the architecture in the right way).

Q2: How long does it take the participants to evaluate a scenario?

3 http://sdqweb.ipd.uka.de/wiki/SoCa-Palladio



Q3: How does the participants’ experience in software performance influence the above
metrics?

Q4: Do users of the new visualization perform better than users of the original Palladio
visualization?

To evaluate the quality of the improved visualization with respect to these ques-
tions, we conducted the experiment in two phases. In the first phase, we studied all four
questions above on a mixed group of 21 participants, both faculty members and master
students.

The participants filled out a questionnaire with overall six different scenarios for
which they needed to choose one or more valid design decisions for optimizing a given
scenario. The scenario itself was roughly described in text, whereas the performance
results were present in the visualizations only. 14 of the participants used the original
Palladio visualization (P old), the remaining 7 participants used the new visualization
(C new). All participants needed to answer the same questionnaire, but were provided
with the different visualizations. Participants using the new visualization C new were
provided with result visualization as shown in Figure 5 and described in Section 6.1.
Participants using the original Palladio visualization P old were provided pie charts for
resource utilization, mean values and cumulated density functions for response time,
and/or behavior specifications of component internals for resource demands. Each vi-
sualization diagram provided a short legend.

The questionnaires provided multiple design options for each scenario. There were
correct and required design options (that would resolve the performance problems),
wrong design options (that would actually worsen the performance) and optional design
options (that might slightly improve performance or save cost). For each participant
and each scenario, we evaluated whether all correct and required design options and
no wrong design options were checked. In this case, the decision of the participant
for this scenario was considered correct. The optional design options had no influence
on this assessment. Thus, although we provided a multiple choice questionnaire, sheer
guessing would have led to very few correct decisions.

We asked the participants to self-assess their experience in software performance.
Based on the self-assessment, we can distinguish our results for participants with “low”
or “high” experience.

For the comparison (Q4), we performed statistical hypothesis testing on Q1 and Q2.
Our hypothesis were H11: “Participants using C new make in average more correct
design decisions over the evaluated scenarios than participants using P old” and H21:
“Participants using P old need longer for the questionnaire in average than participants
using C new”. We decide whether to reject the opposite null hypotheses H10 and H20

based on Welch’s t-test [27] and a significance level α = 0.05.
In the second phase, we studied how well participants totally untrained in both soft-

ware development and software performance can handle the new visualization for fur-
ther insight into Q3. We asked another 20 undergraduate students in their second year
to interpret the new visualization and also fill out the questionnaire described above.

We do not claim to have conducted a controlled experiment, in which we have con-
trolled all influencing factors (such as common knowledge of the participants). Rather,
our study allows an initial evaluation of the improved, new visualization C new.
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6.1 Scenarios: Performance Design Decisions

To illustrate the possible visualizations, we created six different performance scenar-
ios in which changes in the software architecture design are required. All scenarios are
minimalistic and basic. More complex scenarios would be a combination of the visual-
ization of basic scenarios.
1) Server bottleneck. In the first scenario (cf. Fig. 5 A), two servers are connected by a
network connection. One of the servers is indicating a very high utilization (>=90%),
while the other has a normal utilization. In this case and at this level of information,
there are two basic alternatives for increasing the performance of the system: a) use
stronger server hardware for the highly utilized server, or b) consider changing compo-
nent allocations (see scenario 4). For this scenario it is crucial to allow fast bottleneck
recognition.
2) Network bottleneck. This scenario is comparable to the previous one (same topology;
similar to Fig. 5 A), beside the fact that another resource – the network connection – is
in an overload situation. Again, here two design alternatives are imaginable: a) increase
the bandwidth of the network connection, or b) change the component allocations such
that network traffic is reduced. Scenario 4 presents possible component relocations.
3) Replicated resources. If a single server has multiple CPUs or CPU cores, but just
one or few of them are utilized, a lack of parallelism is indicated (cf. Fig. 5 B). In
this case, a) other versions of utilized components with increased optimizations for



parallel execution can be used, or b) low utilized server nodes can be down-sized to
avoid wasting computational power, or c) further components can be allocated to the
same server (and possibly bound to single CPUs) to improve the utilization of unused
CPUs / cores. If the performance requirements are not fulfilled, also faster CPUs / cores
can be used to avoid a bottleneck.
4) Component’s resource demand. If server nodes are in an overload situation (cf.
Fig. 5 C), it is desirable to also examine the component’s allocation to server nodes for
gaining insight on the causes of load. Therefore, each component’s resource demand
must be known. If the resource demand is normalized per server node, one can easily
identify large demands which are likely to cause the overload: a) If at the same time
other server nodes have only little load, it is a possible alternative to move the compo-
nent with high resource demand to the other server nodes, b) if both, a server node and
also a connected network connection have a high load, one needs to rethink the com-
plete allocation and should also check whether for example the network connection
could be improved to support solution a), c) for the server node with high utilization,
also faster CPUs can be used.
5) Compatible components. In scenarios where two or more components offer the same
interface, they become exchangeable (cf. Fig. 5 D). This is the case for databases with
standardized interfaces, for example. By comparing the response times of exchangeable
components, the faster implementation should be easily selectable. Such component
selection decisions in general cannot be met, as component response time is sensible
for the usage profile. If for example, a database is optimized for read requests, but fed
with mostly writes, another database optimized for that purpose is much faster. Thus the
decision cannot be met in advance, instead performance results (here: response time)
must be visualized for a specific load situation.
6) Multiple usage profiles. As indicated in the previous case, components are subjected
to different usage profiles. Sometimes, also for a deployed component, the usage pro-
file still changes: Peak load situations, batch runs, or increasing users over time need
to be handled. To estimate the scalability and sensitivity of a software architecture for
changes in the usage profile, it is preferable to directly compare their impact on an ar-
chitecture level. If the architecture does not satisfy the requirements for different antic-
ipated load situations, the above scenarios 1-5 can be applied. Visualizations can apply
multiple data layers which can be interactively hidden / unhidden. In the experiment,
the participants compared two different usage profiles, each of which was visualized
similarly to figure 5 C.

6.2 Phase 1 Results

All participants completed the entire questionnaire with the above scenarios in an av-
erage of 26.43 minutes (new visualization C new) or 40.17 minutes (original Palladio
visualization P old).

Table 1 compares the results for question 1 (correctness) and question 2 (duration)
for the different levels of experience (question 3) and for the two visualizations (ques-
tion 4). Our first observation is that participants using the new visualization C new
were able to make better design decisions (92.8% correct vs. 72.7% correct for P old,



Experience % of correct deci-
sions

total number of de-
cisions

duration in min standard deviation
of duration

C new P old C new P old C new P old C new P old

low 91.7% 75.0% 24 36 28.25 37.00 15.44 4.24
high 94.5% 70.8% 18 48 24.00 41.75 13.08 12.45
total 92.8% 72.7% 42 84 26.43 40.17 13.46 10.13

Table 1. Results for cartography (C new) and the original Palladio visualization (P old)

p-value = 0.007 < α, thus we reject H10). Both low and highly experienced partici-
pants performed similarly for their visualisation. It is remarkable that high experienced
participants using P old performed worse than low experienced. On the questionnaires
of some of these participants, we found manual calculations, which possibly lead to
wrong results. In column “total # of decisions”, we show the total number of decisions
made by all participants in the corresponding group: Each of the 8 participants evaluated
up to 6 scenarios.

For the duration, we again notice that participants using C new were able to fin-
ish the decision process (including interpretation and the decision itself) more quickly
(p-value = 0.03 < α, thus we reject H20). Here, for low experienced participants us-
ing C new, the standard deviation of the duration is three times higher than for P old.
Interestingly, more experienced participants needed longer than low experienced par-
ticipants for interpreting P old. Possibly, they tried to delve deeper in the information
available for P old, for example behavior specification (which did not lead to better
decisions).

Overall, C new performed significantly better with respect to both correctness and
duration. We can accept both hypothesesH11 andH21 stated above. The experience of
the participants (with at least basic knowledge in software engineering) does not seem
to have a strong impact on the results.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
C new 100.0% 100.0% 100.0% 85.7% 85.7% 85.7%
P old 92.9% 92.9% 78.6% 35.7% 64.3% 71.4%
Average 95.2% 95.2% 85.7% 52.4% 71.4% 76.2%

Table 2. Percentage of correct decisions for each scenario

Table 2 shows the percentage of correct decisions for each scenario and the two
visualizations. For the simpler scenarios 1 and 2, most subjects decided for the right
design options. For the more complex scenarios 3, 5, and 6, the ratio of correct decisions
is slightly lower for C new, whereas for P old, the ratio dropped about one quarter. For
scenario 4, the differences betweenC new and P old are most pronounced, as the P old
visualization seems to have been hard to interpret for most subjects: In P old, resource
environment and software architecture are split into two distinct views, which might



have been problematic to link. Here, most P old subjects could not correctly assess the
consequences of their proposed re-allocation decision.

6.3 Phase 2 Results

In phase 2, the 20 participants untrained on both software development and software
performance were able to make correct design decisions in 68.3% of a total number
of 99 completed scenarios (some participants only answered 3 or 4 scenarios). The
duration was on average approx. 40 minutes. Thus, the new visualization C new seems
to have helped the participants, even though totally inexperienced, in gaining some
insight in the performance problems of the described scenarios. However, the lower
percentage of correct decisions shows that the visualization is probably not sufficient
to allow these totally inexperienced participants to make correct design decisions in
general and to reliably solve performance problems.

7 Conclusions

In this paper, we have presented an integrated approach for the visualization of software
performance at an architectural level. With visualization means from software cartogra-
phy, our approach depicts software performance prediction results in an software archi-
tecture visualization. As our quasi experiment involving 41 participants shows, the ap-
proach enables users with at least a basic level of experience in software development to
correctly derive design decisions from visualizations of performance prediction. Com-
pared to a reference group applying the original visualization of the Palladio approach,
participants performed more correctly and faster, independent of in-depth experience
with software performance prediction. Thus, our approach enables users to map perfor-
mance prediction results back to a software architecture model and lets them decide for
correct design alternatives.

Our approach meets demands of software cartography visualizations (cf. Section 4)
as it a) relates architecture and performance prediction results, b) highlights critical
architectural elements, c) eases correlation analysis through multiple layers, and d) en-
ables decomposition by multiple viewpoints at different levels of detail. Nevertheless,
our approach is not useful for completely untrained users, which have no experience
with software development and software performance engineering. Currently, our visu-
alizations are limited to four different views, although including support for an arbitrary
number of data layers.

For our future work, we plan to further push the automation of the integration of
the Palladio performance prediction approach with the SoCaTool software cartography.
Besides adding further views to the approach, we also would like to integrate other
quality attributes like reliability and maintainability. As our approach is not limited
to Palladio, it would be beneficial to use the proposed visualizations with other SPE
approaches.
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