Software Extension Mechanisms

Benjamin Klatt and Klaus Krogmann
Chair for Software Design and Quality (SDQ)
Institute for Program Structures and Data Organisation (IPD)
University of Karlsruhe, Germany
Email: {klatt, krogmann} @ipd.uka.de

Abstract—Industrial software projects not only have to deal
with the number of features in the software system. Also issues
like quality, flexibility, reusability, extensibility, developer and
user acceptance are key factors in these days. An architecture
paradigm targeting those issues are extension mechanisms which
are for example used by component frameworks. The main
contribution of this paper is to identify software extension
mechanism characteristics derived from “state-of-the-art” soft-
ware frameworks. These identified characteristics will benefit
developers with selecting and creating extension mechanisms.

I. INTRODUCTION

In 1979, David Parnas [1] wrote about the advantages of
extensible software and why developers should start adopting
to this. He already named typical problems of software engi-
neering like:

o Delivering an early release with a subset of features.
o Adding simple features without enormous code changes.
o Removing or adding functionalities for product variants.

These are only examples for the need of developing flexible
and reusable software in a fast and reliable way. In recent
years, a lot of research has been done in this area. Object
Oriented Programming (OOP), Component Based Software
Development, Service Oriented Architectures (SOA), Model
Driven Software Development (MDSD) and a lot more have
influenced the software development discipline. Extension
mechanisms are no fundamentally new innovation. They have
existed for a long time and are a design decision and combi-
nation of existing techniques. Extension mechanisms can vary
a lot in their features and implementation strategies, but they
all are sharing the intention to make a software extensible.

On the one hand, providing a good extension mechanism
can lead to a successful and widely accepted product or
framework (e.g. OSGi [2], Eclipse [3], Typo3 [4]). On the
other hand, a bad one can restrict the evolution of a software,
increase costs for maintenance and support and lead to rejec-
tion by developers and users.

This paper results from an analysis of general issues on
extension mechanisms in a product-independent way. Only
certain aspects of extension mechanisms have been considered
in the existing literature (e.g. evolution [5] or life cycle
[6, pp. 459]). In this paper, we provide a broad overview
on important characteristics, when designing or selecting an
extension mechanism.

This paper uses three key terms. An extension point is the
definition of the provided interface for extensions. An extens-

ion itself is an implementation according to an extension point;
equal to an implementation of a component. And an extension
mechanism includes the system support and environment of a
software allowing it to be explicitly extensible. In this paper
we also review the relation to the environment and to the
context of the extension mechanisms.

The contribution of this paper is the identification of
different characteristics of software extension mechanisms.
These characteristics are a result of an thorough analysis and
practical evaluation of existing solutions. We investigated the
widespread used solutions OSGi [2], Eclipse [3], Typo3 [4],
and osCommerce [7] to find out commonalities and unique
features of their extension mechanisms. To allow a better
overview on available options, we organised the results in a
classification tree.

However, we do not claim to offer a comprehensive
overview on all existing software extension mechanisms.

The remainder of this paper is structured as follows: In
Section 2 present some related work to this topic. In Section 3
we discuss different characteristics of extension mechanisms
and present the classification developed. Section 4 gives a
conclusion and sums up the results of this paper.

II. RELATED WORK

Parnas [1] stated why extension mechanisms are required
and what the challenges and advantages are. He introduced
many design principles to consider. Well designed extension
mechanisms are an application of his ideas and add results
from the research of the last years as for example from the
related work below. An overview on component frameworks
also including extension mechanisms can be found in [8].

The design of Application Programming Interfaces (API)
and Service Programming Interfaces (SPI) define the contract
between an extension mechanism and the implemented ex-
tension itself. For this, they are key factors for good extension
mechanisms. They define how extensions execute a part of a
system like a library (API) or how extensions are executed by
the system in case of a framework (SPI), respectively. Joshua
Bloch has summarized a good set of principles for API design
[9].

Frameworks have been developed to simplify repeated work
and to support a short time-to-market development. They
combine generalised code and components, best practices, and
API/SPI design. There are different specifications for the term
“framework” as for example in [10, pp. 552] or [11, pp.

340]. In this paper we separate frameworks from libraries very
similar to [11, pp. 340] and [11, pp. 456]. The main difference
is that frameworks provide a basic application that is the main
executed part of the system. Libraries are called and not the
leading part in the system. Extension mechanisms are included
in most of the existing frameworks and thus a lot of experience
can be gathered from the work done in this field.

Component based software development [12] must make
use of software extension mechanisms. The components are
extensions themselves and the extension mechanism consists
of connecting the extension and the extended system using
well defined interfaces. Some software including an extension
mechanism, or at least the subsystem of the software connected
to the extensions, can be handled as a component based soft-
ware system. Often, the extension mechanisms are provided
by component frameworks like Eclipse RCP or Enterprise Java
Beans (EJB) but the design of extension mechanisms is not
necessarily related with components.

The concept of software factories is to use state-of-the-art
development techniques to develop a modular software that
can be assembled by the vendor according to the customer
specific requirements. The goal is to optimize the develop-
ment life cycle and the reuse of existing components. Jack
Greenfield has written one of the first books [13] about this
concept. Extension mechanisms can be used as the foundation
for customer specific software assemblies.

Extension mechanisms are not a new idea and every soft-
ware that can be extended not only by changing its code
provides something like an extension mechanism. Most of
them are product specific extension mechanisms (i.e. [14]) and
with a wide range of quality. In any case, they can provide a
lot of experience for how to design an extension mechanism.

Klatt [15] classifies existing products according to the
characteristics presented in this paper. Here, OSGi, Eclipse,
Typo3, and osCommerce are discussed in detail and some
guidelines for implementing extension mechanisms are given.

III. CHARACTERISTICS OF SOFTWARE EXTENSION
MECHANISMS

This section describes the characteristics of extension
mechanisms identified by the analyses of the investigated
systems OSGi, Eclipse, Typo3, and osCommerce. The char-
acteristics can be specific to an extension mechanism as well
as important for a whole software development process. They
will be discussed for both aspects.

To visualize the characteristics, feature diagrams as defined
by Czarnecki and Eisenecker [16] are used in this paper. Figure
1 gives a short introduction to reading feature diagrams.

Feature
with
Subnodes

Legend
A exclusive OR
4. inclusive OR

@ mandatory feature
O optional feature

Feature

Fig. 1. Feature Diagram Legend

Figure 2 gives a top-level overview of the characteristics.
Which of the characteristics are most important depends on

the goal to be reached with an extension mechanism for a
specific software. However, all of them should be considered
when designing a software with an extension mechanism. It
may be enough to consider a characteristic as unimportant but
at least this should be done.

A. System Access

System
Access
L Component Process Layer
Unlimited Specific Specific Specific
Fig. 3. System Access

A major decision when designing a software with an ex-
tension mechanism is the system access for the extensions
— the way an extension can access the rest of the software
system. As shown in Figure 3 this can reach from extensions
on a specific layer, as for example the presentation layer, to
the point of the system core. Additionally, extensions can be
specific to a component or to a process (such as a business
process). Accessing business process logic can imply access
for multiple components or layers at once.

The deeper the extension mechanism is integrated in the
system the more flexible the system can be extended, but
also issues like complexity, security and reliability have to
be handled more carefully.

In OSGi, access is not restricted by the framework itself; no
pre-defined layering exists. It is up to the software developer
to define them. In Eclipse access is restricted by extension
points which exist for every extension. It allows designing
components, processes, and layers in an arbitrary way. For
Typo3, the extension API is fixed within pre-defined layers,
but own extension points (so-called hooks) can add different
architectural styles and architectural extensions. The latter is
then specific for a certain component or process. osCommerce
does not limit access at all.

B. Execution Strategy

‘ Execution Strategy ‘

SPI API

Fig. 4. Execution Strategy

There are two different execution strategies for extensions.
Either the extension is executed by the system or the extension
executes the system or at least a part of it. Those two different
strategies are also known as Service Programming Inter-
faces (SPIs) respectively Application Programming Interfaces
(APIs) (Figure 4). A framework for example makes use of
extensions implemented according to a Service Programming

Extension Mechanism

‘ Execution Strategy

Encapsulation ©

‘ Dependencies

‘ Security

Usability ‘

Fig. 2.

Interface. It represents a base application that calls the installed
extensions. Libraries provide an Application Programming
Interface to be executed by an extension which is the main
executing part. This is like a user interface or scheduler
executing the application.

In OSGi and Eclipse extensions are usually called by
the framework. Patterns like publisher and subcriber allow
changing the control flow. For Typo3, extensions are embedded
into a whole, fixed call stack. This stack involves portions
of system actions before and after execution of an extension.
Usually, extensions are called by the framework; inverting the
control flow is only seldomly used as it is not supported by
the framework. osCommerce does not restrict the execution
strategy.

C. Evolution

Evolution
‘ Versions ‘ ‘Compatibility‘ ‘ History ‘
Fig. 5. Evolution

The evolution of extensions as well as of the extension
mechanism itself is an issue as it is with any software system.
Figure 5 presents key factors for the evolution. The extension
mechanism itself has to be as stable as possible or at least
backward compatible. Otherwise all existing extensions will
not work anymore.

For the extensions, adding functionalities to an API or
removing some from an SPI should not change the execution
behavior or the feasibility of an extension [12, pp. 83] because
of a still valid set of functionalities. But the other way around,
to add required calls to an SPI or remove some from an
API should be avoided to ensure backward compatibility.
Otherwise migration support has to be provided.

The extension dependencies section III-E discuss another
aspect that is tightly connected to the evolution of extensions.
Managing the extension hisfory becomes necessary if it is
required to get back to an older version, e.g. if an invalid
new extension was installed or a product bundle with an older
functionality set should be packaged. The extension history is

Top-Level Characteristics

also necessary if the mechanism has to be able to support par-
allel instances of different versions of the same extension, e.g.
for differing extension dependencies. Furthermore, the history
provides a good feedback about an extension’s development
activities for the one who has to select an extension.

So-called manifests in OSGi allow explicit versioning of
extensions. Eclipse allows additional descriptors and also
checks versioning on installing new extensions. Here, an
update mechanism exists to update existing extensions. Eclipse
also supports multiple versions of the same extension (plugin)
being installed at the same time. For Typo3, descriptors ex-
plicitly capture versioning information. Versioning is checked
on installation and execution. An update mechanism is built-in
to ease updating extensions. Only one version of an extension
is allowed at a single point in time. osCommerce has no built-
in versioning. Instead, versions are managed through external
repositories.

D. Encapsulation

Encapsulation

Q
‘ Namespace ‘ ‘ Extension Points ‘ ‘ Location ‘

A

‘ Explicit ‘ ‘ Implicit ‘

Fig. 6. Encapsulation

The encapsulation is a characteristic to separate different
extensions from each other and/or from the main software pro-
viding the extension mechanism. In Figure 6 the three aspects
namespace, extension points and location are visualized.

Namespaces are used for the identification of extension
artifacts. This includes objects as well as configurations or
any other elements that should be identified as connected to
an extension.

Extension points represent a well defined (provided) inter-
face between the extension and the extended system or other
extensions. As extension points are clear interfaces, they can
support the architectural quality. Extension mechanisms can
provide facilities to describe extension points explicitly or they
can be described informal e.g. within a system documentation
(implicit).

Explicit Extension Points provide the possibility to create
a test framework that implements an extension point with the
capability to test the extensions without the whole extended
software in place. Furthermore, explicit extension points be-
come important for packaging releases with a subset of
functionality. This can be used either for early releases or for
reduced variants in conjunction with product line development
[13].

The location characteristic is important to identify the
resources of a specific extension.

Without any of these features, extensions are just direct code
manipulations in the core software. In this case the extension
can only be identified by the code difference of the old system
and the new system.

OSGi and Eclipse allow sealed packages (Java capability),
locations for finding and loading extensions can be specified,
and namespaces are supported. Eclipse additionally allows re-
stricting access to extension points or dedicated exported pack-
ages. Access rules can be defined in the so-called plugin.xml
file. Typo3 expects extensions at a fixed location. Extension
points (realised as low-level configurations) manage access
visibility. Namespaces are supported but are not hierarchical.
In osCommerce, specific modules have conventions for placing
files. Additional encapsulation is not supported.

E. Dependencies

Dependencies

« T

Definition Check

Fig. 7. Dependencies

An issue that needs to be handled explicitly are dependen-
cies between extensions. They are stated in required interfaces
and resources dependencies. For example multiple extensions
may need to access the same resources. Additionally, it is not
only possible to design an extensible software, but also to
design extensible extensions. This brings in a lot of flexibility
but increases complexity as well. As extensions can change
independently, it is important to take care for this dependencies
to not get too complex or impossible to be resolved. This can
happen if two extensions A and B require different versions of
a third extension C but the software supports only one instance
for each extension. This may result in an irresolvable problem.

To handle this, two basic facilities exist, making these de-
pendencies explicit (Figure 7). Dependencies definition makes
it possible to better identify them for the user and automate
resolving for the extension mechanism. For example the ex-
tension mechanisms of OSGi, Eclipse and Typo3 have all a
facility to list the dependencies in their extension descriptors.
Check of these dependencies by the extension mechanism is an
additional feature making it possible to handle more complex
dependencies in an automated way even with more than two
extensions involved. Eclipse and Typo3, both have a check

mechanism integrated in their extension management which
generates warning if any dependency is not fulfilled.

For OSGi and Eclipse manifest files explicitly declare
dependencies among extensions (bundles). Extensions can
require a specific version of an extension. Thus, defintion
and check of dependencies are enabled. For Eclipse, there
are additional checks available, if extensions are loaded via
the repository (find/update mechanism). In Typo3, required
plugins and their range of versions or exact version are
specified explicitly. Dependencies are checked before loading.
If they are not fullfilled, corresponding messages indicate the
reason. osCommerce has no explicit dependency declaration
and thus check support.

F. Security

Security deals with the protection of information stored in
the software system. It is influenced by the data an extension
provides access to, the rights to whom it provides this access
and the data the extension is able to change. It has to be
ensured that only those subjects have access to the data
who are intended to. Also extensions should only be able to
manipulate data they are designed for. A more sophisticated
way is for example to provide a configuration for the data
access in the extension mechanism.

OSGi and Eclipse use the encapsulation mechanism to
ensure security. Eclipse additionally allows signing trustworthy
plugins. Typo3 secures applications by limiting access depend-
ing on namespace declarations. Additional security is available
through the PHP environment, Typo3 runs in. osCommerce
relies on the PHP environment only.

G. Usability

Independent from the goal of an extension mechanism it is
important to design it to be usable as intuitively as possible. If
developers can use it with a clear understanding and without
a huge training effort, this will support a broader acceptance
and use. As with the API and SPI design, extensions have to
be as easy to understand as possible. The already mentioned
overview of principles on interface design given by Joshua
Bloch [9] also applies to extension mechanisms.

OSGi provides basic means of structuring an application,
but only low-level infrastructure is provided by the framework
itself. Eclipse additionally supports plugins, rich client plat-
form applications and a “full comfort” framework including
utility classes and installation managers. Typo3 has a so-
called kickstarter for extension development, a comprehensive
framework including dozens of utilities and also features an
installation manager. osCommerce has no specific framework
usability features.

H. Life Cycle

The life cycle of an extension defines which states it can run
through. Most component frameworks have such life cycles;
sometimes with specific enhancements (e.g. [6, pp. 459]).

The states that extensions run through do not have to be
explicit in a system but can be identified as follows:

Life Cycle

Q O O @)
‘ Install H Loading H Execution H Update H Unloading H Uninstall ‘
‘ Defined H Undefined ‘
Fig. 8. Life Cycle

« installation The physical extension resources are brought
into the system.

e loading The required resources and configurations are
loaded by the active system instance. They are analyzed
and initialisation steps might be performed.

o execution The real execution of the extension. This com-
bines start, run and stop of processes.

e update Any changes of the extension configuration or
resources are performed.

o unloading The resources and configurations are removed
from the active system instance.

 uninstallation The physical extension resources are re-
moved from the system.

The point in time where extensions are loaded can affect
the start-up time of the system, the first execution time and/or
each execution of an extension. It has to be clarified whether
the start-up and reboot, the reaction time or for example a
check with each execution are important or not. Depending
on the implementation of an extension the loading strategy
can influence the functional behavior, too. For example, an
extension estimates being loaded once at system start-up
time and prepares some global resources. But the extension
mechanism reloads it with every execution and the extension
tries to prepare those global resources over and over again and
the system performance decreases. It is important to decide
that extensions either have to be independent from the loading
time or to define when the loading will happen.

The life cycle of OSGi, Eclipse, and Typo3 supports all
mentioned features. osCommerce has a light-weight life cycle
with only mandatory features.

1. Repository

‘Organisation H Publish H Remove H Visibility ‘

e e

‘ Centralized H Decentralized ‘ ‘ Public H Private ‘

Fig. 9. Repository of an extension mechanism

Writing extensions not only for designing flexible software,
but also for providing reusable components, requires a place
to store those components. Such a place is called an extension
repository.

Depending on the extensions and the designed extension
mechanism, the repository can range from a simple directory
in the file system to a web based, deployment supporting
service point. It at least has to support publish and retrieve
actions.

Specifying a repository requires to define its organisation. It
can be built either centralised or decentralised according to the
typical advantages and disadvantages of creating a bottleneck
or loosing control of a consistent structure. Another aspect is
the visibility of the repository itself, the list of all extensions
or some specific extensions. Depending on the requirements
it might makes sense to introduce a separation of public and
private visibility.

A well designed repository is also influenced by other
characteristics identified in this paper like version control, life
cycle, selection, and certification (see below).

OSGi has no dedicated repository support. Eclipse has a
decentrally organised repository structure. Its framework does
not support privacy or remove. Support of the latter features
is up to a update site maintainer. Typo3 by default has a
centralised repository, but does not support private extensions;
otherwise it has fully repository support. osCommerce uses
a centralised website as repository to publish and remove
extensions.

J. Selection

<>

System
Supported

Complete
Manually

‘ Feedback ‘ ‘ Search ‘

o N

User ‘ ‘ Voting ‘

Review

Fig. 10. Component selection from a repository

Selecting a suitable extension can either be completely
manual or supported by the extension mechanism that can
access a repository (Figure 10). The selection consists of
two major steps. First, potential candidates have to be found.
Afterwords, the best one of them has to be chosen. With
extension mechanism support a search can be provided for
the identification of potential candidates. This can range from
a simple keyword search to a semantic or context sensitive
one (cf. [17]). To select the best candidate a feedback system
can be implemented. Voting mechanisms or user reviews can
provide information to support a decision. It is important to
take functional as well as non-functional requirements into
account. This is also tightly connected to the certification and
repository characteristics of the extension mechanism [18].

OSGi does not support selection of extensions. Eclipse has
numerous community websites to ease selection of extensions,

but features no support by the framework itself. Typo3 pro-
vides search, browsing, and number of downloads statistics
to select extensions. The framework integration is very light-
weight. osCommerce allows browsing extension websites, its
selection facilities are comparable to the ones of Eclipse.

K. Certification

Certification

o

Status Qua_llty
Review

Fig. 11. Certification for extensions in a repository

The evaluation of candidates for a required extension may
become an expensive or at least a time consuming task. Cer-
tifications can provide some metrics of quality attributes and
well defined specifications to support this evaluation process.
Certificates are not only a technical aspect. If business requires
selling extensions, providing quality guarantees is likely to
increase revenues.

Figure 11 shows two aspects of the certification. One is the
status of the extension. Which identifies the maturity of the
extension and provides information on whether it can be used
for example in productive systems. Another aspect which can
be found in certifications are reviews. Those reviews have to
be performed according to a standard process but can provide
a trustworthy feedback and quality assurance. Moreover, a
manual review will lead to personal signature by the reviewer.

The drawback of certifications is the effort of the certifi-
cation specification itself as well as the certification of the
individual extensions. This effort makes especially sense for
very often reused or commercial extensions [18].

OSGi, Eclipse, and osCommerce do not support certification
of extensions. In the case of Typo3, extension from the central
repository have a release status. Additionally, its extensions are
partially reviewed by a dedicated security team and can get
approved.

IV. CONCLUSION

Extension mechanisms can support the general requirements
of faster, cheaper, more flexible, and evolving software devel-
opment. Those goals are mainly achieved by the support of
modularisation to break down complexity, distributed develop-
ment, reusability and more controlled software evolution. With
a good extension mechanism it is also possible to deliver early
working releases with a subset of functionality and to develop
product families.

Extension mechanisms can lead to a better software but only
if they are done right. Vice versa, a bad extension mechanism
can result in higher complexity, decreased efficiency and
waning acceptance by the developers.

Most of today’s software architects have already developed
extensible software or at least have been in contact with one.
Some of them may have taken care for issues covered by

the related work but only a few have explicitly thought and
talked about all characteristics of extension mechanisms. This
paper presented a classification of characteristics which are
important for them. The development of new software products
or the refactoring of existing ones can use the presented
characteristics to select and design appropriate extension
mechanisms according to the requirements of a software.

Extension mechanisms are once more not the silver bullet
but even if the challenges of software development are not
solved, they are supported in a very advanced way. At least
their concepts should be known and used by every software
architect.

OSGi is a high-quality framework also suitable for other
frameworks built on top of it (such as Eclipse), but lacking
support of repository-related features. Web-frameworks like
Typo3 are currently being developed to ease development
of high-quality “web-architectures” beyond a web-based con-
tent management system. Eclipse has become a powerful
framework inheriting the features of OSGi, but is (intention-
ally) missing central repository infrastructure and certification,
which is available for Typo3. osCommerce lacks architectural
support for a good extension mechanism. Here, extensions are
realised in an ad-hoc manner. Little control and community
support ease quick-wins when implementing extensions while
potentially originating maintainability issues in the future.

For future work, we like to extend the number of reviewed
frameworks supporting extension mechanisms to allow a com-
prehensive market overview. Additionally, we are planning to
extend the feature tree to capture more aspect of extension
mechanisms.

REFERENCES

[1] D. L. Parnas, “Designing software for ease of extension and contraction,”
in Proceedings of the Third International Conference on Software
Engineering, 10-12 1978, pp. 264-277.

[2] O. Alliance. (2008) Osgi alliance — main / osgi alliance. [Online].
Available: http://www.osgi.org

[3] E. Foundation. (2008) Rich client platform - eclipsepedia. [Online].
Available: http://wiki.eclipse.org/Rich_Client_Platform

[4] T. Association. (2008) Typo3 content management system. [Online].
Available: http://www.typo3.org

[5]1 A. Stuckenholz, “Component evolution and versioning state of the art,”
SIGSOFT Softw. Eng. Notes, vol. 30, no. 1, p. 7, 2005.

[6] J. McAffer and J.-M. Lemieux, Eclipse rich client platform. Addison-
Wesley, 2006.

[7] osCommerce. (2008) oscommerce - open source e-commerce solutions.
[Online]. Available: http://oscommerce.org/

[8] K.-K. Lau and Z. Wang, “A taxonomy of software component models,”
in Conference on Software Engineering and Advanced Applications. 31st
EUROMICRO, September 2005, pp. 88-95.

[9] J. Bloch, “How to design a good API and why it matters,” in OOPSLA

’06: Companion to the 21st ACM SIGPLAN conference on Object-

oriented programming systems, languages, and applications. New York,

NY, USA: ACM, 2006, pp. 506-507.

V. Claus and A. Schwill, Duden Informatik A - Z, 4th ed. Dudenverlag,

2006.

H.-J. Schneider, Lexikon Informatik und Datenverarbeitung, 4th ed.

Oldenbourg, 1997.

C. Szyperski, D. Gruntz, and S. Murer, Component Software: Beyond

Object-Oriented Programming, 2nd ed. New York, NY: ACM Press

and Addison-Wesley, 2002.

J. Greenfield and K. Short, Software factories.

[10]
(1]

[12]

[13] Wiley, 2004.

[14]

[15]

[16]

[17]

(18]

A. S. Incorporated, Third-party plug-ins for Photoshop,
Adobe Systems Incorporated, August 2008. [Online]. Available:
http://www.adobe.com/products/plugins/photoshop/

B. Klatt, “Software Extension Mechanisms,” Fakultt fr Informatik,
Karlsruhe, Germany, Interner Bericht 2008-08, 2008. [Online].
Available: http://digbib.ubka.uni-karlsruhe.de/volltexte/1000009113

K. Czarnecki and U. Eisenecker, Generative programming. New York,
NY: Addison Wesley, 2002.

S. Overhage, “Towards a Standardized Specification Framework
for Component Development, Discovery, and Configuration,” in
Eighth International Workshop on Component-Oriented Programming
(WCOP2003), 2003.

A. Alvaro, R. Land, and I. Crnkovic, “Software component evaluation:
A theoretical study on component selection and certification,” MRCT
Report, 2007.

