
An approach to maintainable model
transformations with an internal DSL

Master thesis of

Georg Hinkel

At the Department of Informatics
Institute for Program Structures

and Data Organization (IPD)

Reviewer: Prof. Dr. Ralf Reussner
Second reviewer: Prof. Dr. Walther Tichy
Advisor: Dr. Lucia Happe
Second advisor: Dr. Thomas Goldschmidt

Duration:: 1st May 2013 – 31th October 2013

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

PLACE, DATE

. .
(Georg Hinkel)

iii

Abstract

In recent years, model-driven software development (MDSD) has gained
popularity among both industry and academia. MDSD aims to generate
traditional software artifacts from models. This generation process is
realized in multiple steps. Thus, before being transformed to software
artifacts, models are transformed into models of other metamodels. Such
model transformation is supported by dedicated model transformation
languages. In many cases, these are entirely new languages (external
domain-specific languages, DSLs) for a more clear and concise represen-
tation of abstractions. On the other hand, the tool support is rather
poor and the transformation developers hardly know the transformation
language.
A possible solution for this problem is to extend the programming lan-
guage typically used by developers (mostly Java or C#) with the re-
quired abstractions. This can be achieved with an internal DSL. Thus,
concepts of the host language can easily be reused while still creating the
necessary abstractions to ease development of model transformations.
Furthermore, the tool support for the host language can be reused for
the DSL.
In this master thesis, NMF Transformations is presented, a frame-
work and internal DSL for C#. It equips developers with the ability
to specify model transformations in languages like C# without having
to give up abstractions known from model transformation standards.
Transformation developers get the full tool support provided for C#.
The applicability of NMF Transformations as well as the impact
of NMF Transformations to quality attributes of model transforma-
tions is evaluated in three case studies. Two of them come from the
Transformation Tool Contests 2013 (TTC). With these case studies,
NMF Transformations is compared with other approaches to model
transformation. A further case study comes from ABB Corporate Re-
search to demonstrate the advantages of NMF Transformations in
an industrial scenario where aspects like testability gain special impor-
tance.

iii

v

Zusammenfassung

In den letzten Jahren hat sich das Konzept der Modellgetriebenen
Softwareentwicklung (MDSD) zunehmend verbreitet. MDSD zielt da-
rauf ab, Traditionelle Softwareartefakte aus Modellen zu generieren.
Diese Generierung geschieht über mehrere Stufen, sodass Modelle erst
mit Hilfe von Modelltransformationen in andere Modelle transformiert
werden. Solche Modelltransformationen werden von dedizierten Mod-
elltransformationssprachen unterstützt, die in vielen Fällen komplett
eigene Sprachen (externe domänenspezifische Sprachen, DSLs) sind.
Dies trägt dazu bei, dass Abstraktionen kompakter und klarer repräsen-
tiert werden können. Auf der anderen Seite ist die Werkzeugunter-
stützung meist unzureichend und die Transformationssprache kennen die
Sprache nicht.
Eine mögliche Lösung für dieses Problem ist, mit Hilfe einer internen
DSL die für Modelltransformationen nötigen Abstraktionen direkt in die
Sprache einzubinden, mit der Entwickler typischerweise arbeiten (in den
meisten Fällen Java oder C#). Dadurch können bestehende Konzepte
aus der Hostsprache wiederverwendet werden und gleichzeitig Abstrak-
tionen geschaffen werden, die die Entwicklung von Modelltransformatio-
nen erleichtern. Auf der anderen Seite kann die Werkzeugunterstützung
der Hostsprache teilweise übernommen werden.
In dieser Masterarbeit wird NMF Transformations vorgestellt, das
eine interne DSL für C#, zur Verfügung stellt. Transformationsentwick-
lern wird damit die Möglichkeit gegeben, Modelltransformationen in C#
zu spezifizieren, ohne auf die aus Modelltransformationsstandards bekan-
nten Abstraktionen verzichten zu müssen. Transformationsentwickler
werden dabei wie aus C# gewohnt von Visual Studio unterstützt.
Die Anwendbarkeit und die Auswirkungen der Sprachgestaltung von
NMF Transformations auf Qualitätsattribute für Modelltransforma-
tionen wird evaluiert durch drei Fallstudien. Zwei Fallstudien wurden bei
dem Transformation Tool Contests 2013 (TTC) eingereicht, um NMF
Transformations mit anderen Ansätzen vergleichen zu können. Eine
weitere Fallstudie von ABB Corporate Research wurde bearbeitet, um
den Nutzen von NMF Transformations in einem industriellen Um-
feld zu demonstrieren, wo Kriterien wie Testbarkeit besondere Bedeu-
tung haben.

v

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Structure of this Master Thesis . 3
1.3. Contribution . 5
1.4. How to read this thesis . 6

2. Related Work 9
2.1. MTLs with external DSL . 9
2.2. Model Transformation as Graph Transformation 10
2.3. MTLs with internal DSL . 10
2.4. Comparison of MTLs . 11
2.5. Maintainability of model transformations 11

3. Foundations 15
3.1. Model-driven software development . 15
3.2. Query-View-Transformation (QVT) . 17

3.2.1. QVT Operational . 17
3.2.2. QVT Relational . 20

3.3. C# language features . 22
3.3.1. Local type inference . 22
3.3.2. Initialization lists and anonymous types 23
3.3.3. Extension methods . 23
3.3.4. Lambda-expressions (Closures) . 23
3.3.5. Monads . 24

3.4. Quality Attributes of Model Transformations 26
3.4.1. Understandability . 26
3.4.2. Modifiability . 27
3.4.3. Reusability . 27
3.4.4. Modularity . 27
3.4.5. Completeness . 27
3.4.6. Consistency . 28
3.4.7. Conciseness . 28

4. Example Transformations 29
4.1. Finite State Machines to Petri Nets . 29
4.2. People to Family Relations . 31

5. Supporting model transformation with dedicated languages 33
5.1. The domain of model transformation . 33
5.2. MTLs as External DSLs . 35
5.3. MTLs as Internal DSLs . 36
5.4. Conclusions . 38

vii

viii Contents

6. Model Transformation Problems 39
6.1. Correspondence & tracing . 39

6.1.1. Problem description . 39

6.1.2. Solutions in general purpose code . 40

6.1.3. Solutions in QVT-O and QVT-R . 40

6.2. Cyclic object models . 40

6.2.1. Problem description . 40

6.2.2. Solutions in general purpose code . 40

6.2.3. Solutions in QVT-O and QVT-R . 40

6.3. Inheritance . 41

6.3.1. Problem description . 41

6.3.2. Solutions in general purpose code . 41

6.3.3. Solutions in QVT-O and QVT-R . 42

6.4. Patterns . 42

6.4.1. Problem description . 42

6.4.2. Solutions in general purpose code . 42

6.4.3. Solutions in QVT-O and QVT-R . 42

6.5. Optimization Tasks . 42

6.5.1. Problem description . 42

6.5.2. Solutions in general purpose code . 43

6.5.3. Solutions in QVT-O and QVT-R . 43

6.6. Higher-Order Transformations . 44

6.6.1. Problem description . 44

6.6.2. Solutions in general purpose code . 44

6.6.3. Solutions in QVT-O and QVT-R . 45

6.7. Transformation Composition . 45

6.7.1. Problem description . 45

6.7.2. Solutions in general purpose code . 45

6.7.3. Solutions in QVT-O and QVT-R . 46

6.8. Testing . 46

6.8.1. Problem description . 46

6.8.2. Solutions in general purpose code . 46

6.8.3. Solutions in QVT-O and QVT-R . 47

6.9. Conclusions . 47

7. NMF Transformations 49
7.1. Abstract syntax . 50

7.2. Architecture of NMF Transformations Core 53

7.3. Stages of the transformation . 55

7.3.1. Initialization . 56

7.3.2. Create Patterns . 56

7.3.3. Execute dependencies . 56

7.3.4. Create delayed outputs . 56

7.3.5. Transform . 57

7.3.6. Finish Patterns . 57

7.4. NMF Transformations Language (NTL) . 57

7.4.1. Specifying Transformations . 57

7.4.2. Specifying Transformation Rules . 59

7.4.3. Dependencies between transformation rules 60

7.4.4. Tracing . 64

7.4.5. Transformation rule instantiation . 67

7.4.6. Relational Extensions . 70

viii

Contents ix

7.4.7. Composing Transformations . 73

7.4.8. Testing . 76

7.4.9. Extensibility . 78

7.5. Drawbacks & Future Work . 80

7.5.1. Trace serialization . 80

7.5.2. Change propagation . 81

7.5.3. Bidirectionality . 82

7.5.4. Model synchronization . 82

7.5.5. Graphical syntax . 83

7.5.6. Test case generation . 83

7.5.7. Parallelism . 83

7.6. Conclusions . 84

8. Impact of NTL language features to maintainability 85
8.1. Understandability . 85

8.2. Modifiability . 86

8.2.1. Discoverability . 86

8.2.2. Change impacts . 87

8.2.3. Debugging . 87

8.2.4. Testing . 87

8.2.5. Refactorings . 88

8.3. Reusability . 88

8.4. Modularity . 88

8.5. Completeness . 89

8.6. Consistency . 89

8.7. Conciseness . 90

9. TTC Flowgraphs case study 93
9.1. Case Overview . 93

9.2. Planned validation . 95

9.2.1. Validation criteria . 96

9.2.2. Validation procedure . 97

9.3. NMF solution . 97

9.3.1. Task 1: Initialization . 98

9.3.2. Task 2: Deriving Control Flow . 100

9.3.3. Task 3: Deriving Data Flow . 102

9.3.3.1. Task 3.1: Extended Initialization 102

9.3.3.2. Task 3.2: Deriving Data Flow 103

9.3.4. Task 4: Validiation . 104

9.4. Other solutions . 104

9.4.1. FunnyQT . 105

9.4.2. Epsilon . 106

9.4.3. eMoflon . 107

9.4.4. ATLAS Transformation Language (ATL) 107

9.4.5. Eclectic . 109

9.5. General purpose solution . 109

9.6. Results on the TTC . 110

9.7. Validation . 112

9.7.1. Modifiability . 112

9.7.1.1. Discoverability . 112

9.7.1.2. Change Impact . 115

9.7.2. Consistency . 117

ix

x Contents

9.7.3. Conciseness . 119

9.7.4. Understandability . 120

9.8. Conclusions . 121

10.TTC Petri Nets to State Charts case study 123
10.1. Case Overview . 123

10.1.1. Initialization . 124

10.1.2. Reduction . 124

10.1.3. Extensions . 125

10.1.4. Evaluation . 125

10.2. Planned validation . 126

10.2.1. Validation criteria . 126

10.2.2. Validation procedure . 126

10.3. NMF Solution . 127

10.3.1. Initialization . 127

10.3.2. Reduction . 129

10.4. Other solutions . 133

10.4.1. FunnyQT . 133

10.4.2. UML-RSDS . 134

10.4.3. Story Driven Modeling Library (SDMLib) 135

10.4.4. EMF-IncQuery . 136

10.4.5. AToMPM . 137

10.5. Results on the TTC . 137

10.6. Validation . 138

10.6.1. Modifiability . 139

10.6.1.1. Debugging support . 139

10.6.1.2. Refactoring support . 141

10.6.2. Consistency . 142

10.6.3. Conciseness . 143

10.6.4. Understandability . 144

10.7. Conclusions . 145

11.Code generator for OPC UA 147
11.1. OPC UA . 147

11.2. The model transformation in theory . 149

11.3. Planned validation . 150

11.3.1. Evaluation criteria . 150

11.3.2. Evaluation procedure . 151

11.4. Generating code with NMF Transformations 153

11.5. Testing . 159

11.5.1. Transform . 160

11.5.2. RegisterDependencies . 161

11.6. Validation . 162

11.6.1. Evaluation sheet results . 163

11.6.2. Understandability . 166

11.6.3. Extensibility . 166

11.7. Conclusions . 167

12.Validation Summary 169
12.1. Comparison of the case studies . 169

12.2. Understandability . 171

12.3. Modifiability . 171

x

Contents xi

12.4. Consistency . 173
12.5. Conciseness . 173

13.Conclusion 175
13.1. Results . 175
13.2. Assumptions & Limitations . 176
13.3. Future Work . 177

Bibliography 179

A. NMF 185
A.1. Transformations . 185
A.2. Optimizations . 185
A.3. EcoreInterop . 185
A.4. Serializations . 186

B. Implementation details on NMF Transformations 187
B.1. Test coverage . 187
B.2. More close architecture diagram of NMF Transformations 187

C. Implementations of the example transformation problems using NMF 189
C.1. Finite State Machines to Petri Nets . 189
C.2. Persons to Family Relations . 191

D. Feedback from the TTC 2013 195
D.1. Remarks to NMF Transformations . 195
D.2. Evaluation data for the Flowgraphs case . 195
D.3. Evaluation data for the Petri Nets case . 198

E. Evaluation data from the ABB case study 203

F. Metrics for transformations written in NMF Transformations 205
F.1. Metrics for object-oriented design . 205

F.1.1. Depth of Inheritance . 206
F.1.2. Cyclomatic Complexity . 207
F.1.3. Maintainability Index . 208
F.1.4. Class Coupling . 209
F.1.5. Lines of Code . 209

F.2. Metrics for transformation languages . 210
F.2.1. Size metrics . 211
F.2.2. Rule coupling . 211
F.2.3. Depth of Instantiation Tree . 212

Abbreviations 219

xi

1. Introduction

1.1. Motivation

In the recent decades, software systems always became more and more complex. The
common way to handle this complexity is to use a higher level of abstraction and thereby
reducing the complexity. Model-driven software development (MDSD) [SV05] offers ways
to write software in a higher level of abstraction. Domain-specific models that abstract
from implementation details are used as primary software artifacts and transformed into
other artifacts like code or more specific models. To allow an automated transformation,
these models have to conform to formally defined structures. This formal definition of
models is again a domain and thus, also the structure of models is modeled in a metamodel.
The metamodel again has its metamodel, called meta-metamodel. The most common
meta-metamodels, MOF and Ecore [MEG+03], are self-descriptive, i.e. it is possible to
describe the Ecore metamodel in Ecore. In most cases it is enough to consider three
meta-levels. However, in theory there could be arbitrary many. In the Model-Driven-
Architecture (MDA, [S+00]) the originals, i.e. the modeled part of the reality, are referred
to as the level M0. The models are at the level M1, the metamodel on M2 and the
meta-metamodels M3.

To get traditional software artifacts, model transformations are used to transform the
models into software artifacts. Writing these transformations is usually supported by
Model Transformation Languages (MTLs), dedicated domain specific languages for model
transformation. However, these transformations can be very complex and are thus usu-
ally divided into multiple steps. Instead of using a single transformation to generate the
software artifacts out of the models, the input models are transformed into one or many in-
termediate models. These intermediate models also have to conform to a formally defined
metamodel and are then used as inputs to other transformations that eventually create
the desired software artifacts.

Most of these software artifacts are not models but have a text format. To create artifacts
that conform to such text formats, model-to-text-transformations (M2T-transformations,
see [CH03]) are used. In many cases, they are text templates that require the input model
to be semantically similar to the artifact that have to be generated. On the other hand,
transformations used to transform models into models of a different metamodel are referred
to as model-to-model-transformations (M2M-transformations). The target models can be
used as inputs to M2T-transformations or further M2M-transformations. While M2T-
transformations mostly just print the model into text, M2M-transformations can contain

1

2 1. Introduction

complex transformation logic. It is also possible that the input and the target domain are
the same and a M2M-transformation. In this case, the transformation only changes the
input model. These transformations are referred to as in-place transformations.

However, requirements for software always change and so do the software artifacts [Leh74].
If these artifacts happen to be generated, either the generating mechanism or its input
has to be changed. Changing the generated software artifacts is considered to be not
maintainable [SV05]. Instead, MDSD aims to implement the very most of these changes
by altering the models. However, in the long run eventually a changed requirement also
forces model transformations to be changed.

MDSD is an approach to limit the impact on these changes as hopefully most of the
changes can be implemented by simply changing the models and rerun the transformations.
However, there might be changed requirements that cannot be handled by just changing
the models. This is especially the case when the understanding of the domain has changed
so that either the source or target metamodel changes. Whereas the other model-driven
artifacts like metamodels usually change rather seldom (e.g. when the understanding of
the domain changes), model transformations as the generating mechanism for most of the
traditional software artifacts like code are likely to be subject to change quite often. Thus,
the maintenance of the model transformations is crucial for the success of a model-driven
software development project. As they more often transform semantics, the maintainability
especially of M2M transformations is of great importance to model-driven projects.

On the other hand, M2M-transformations are still quite unpopular. Thus, dedicated trans-
formation languages like QVT (see [Obj11] or section 3.2) still suffer from insufficient tool
support. Tool support has been shown to be a major factor for the decision whether a com-
pany would adopt MDE [Sta06]. As recent research shows, the tool support still has not
matured [MGSF13]. But as the tool support for general purpose solutions is continuously
getting better, developers start to expect good tool support that boosts their productivity.
This tool support is also rapidly improved by the tool vendors. As far more developers
work on the improvements to general purpose language tools, it can be expected that the
gap between the tool support for general purpose solutions and MTLs will continue to
increase.

In addition, most external DSLs have a limited expressiveness. As model transformation
tasks have an intrinsic complexity ([SK03a] assume that MTLs must be Turing-complete),
this limited expressiveness often leads to the fact that MTLs copy concepts from general
purpose languages.

A possible way to overcome these problems is to use transformation languages that are
implemented as internal DSLs [Fow10], i.e. they utilize the language features of an existing
language (host language) and are thus able to reuse these concepts. The main benefit from
this approach is that the transformation language is supported by tools in the same way
as the host language. Developers that are familiar with the host language are likely to
familiarize with the transformation language.

The host language for these transformation languages are mostly ones only used by rel-
atively few developers. These languages include for example Ruby utilized by RubyTL
[CMT06] or Scala utilized by ScalaMTL [GWS12].

However, an important aspect of maintenance is also the background of the users. In the
case of model transformation languages, the users are the developers of model transfor-
mations that are mostly unfamiliar with functional or dynamic programming paradigms.
Thus, this approach targets at providing the necessary abstractions for model transfor-
mations on a mainstream language like C#. Using a mainstream language as their host
languages, internal DSLs can also inherit the tool support of the host language. In case of

2

1.2. Structure of this Master Thesis 3

C#, this tool support includes a fully featured debugger, various profilers and refactoring
support.

Such internal model transformation languages already exist. An example that uses a
mainstream language as its host language is NMF Transformations which is part of
the NMF1 framework. The purpose of this thesis is to evaluate the effect of this particular
internal DSL for writing maintainable model transformations. Despite this, this thesis is
also the first document to describe NMF Transformations. As a consequence, various
refactorings of NMF Transformations in design and implementation are also a contri-
bution of this master thesis. The main improvement in the design of NMF Transforma-
tions is the clear separation of the model transformation framework and the internal DSL
built on top of this framework. In this way, NMF Transformations follows the design
guidelines for DSLs specified in [Fow10]. Furthermore, the NMF Transformations Core
framework satisfies the framework design guidelines from [CA08] and has a high test code
coverage. Thus, it is more appropriate for a use in a production environment.

1.2. Structure of this Master Thesis

At first, chapter 2 shows related work. It is an overview given about existing transformation
engines with external (dedicated) DSLs (section 2.1). Section 2.2 gives an overview on
model transformation engines that originally come from the field of graph transformation.
Next, section 2.3 gives an overview of MTLs implemented as internal DSLs much like NMF
Transformations before section 2.4 compares the existing approaches with internal and
external DSLs. Section 2.5 introduces some existing work about maintainability of model
transformations.

Next, chapter 3 introduces some foundations this thesis is built upon. Section 3.1 gives
an overview about the approach of model-driven software development. Section 3.2 in-
troduces the transformation standard QVT by the Object Management Group (OMG)
as standardized examples of transformation languages. Section 3.3 introduces some C#
language features that are referred to in later chapters as the internal DSL of NMF
Transformations makes use of them. Section 3.4 introduces the quality attributes of
model transformations which are referred to later in the master thesis to evaluate NMF
Transformations.

Chapter 4 introduces two example model transformation problems that will be referred to
throughout the thesis for various purposes. However, these problems are only toy examples.
The first of these examples is about transforming finite state charts to Petri Nets, see
section 4.1. The second scenario is about transforming a simple person metamodel into a
more sophisticated FamilyRelations metamodel, as in section 4.2.

Chapter 5 discusses how to support the task of model transformation with dedicated
languages, so called Model Transformation Languages. This chapter is divided in the first
section that discusses the special properties of the model transformation domain, whereas
sections 5.2 and 5.3 discuss supporting model transformations with internal or external
DSLs before section 5.4 concludes this chapter.

Chapter 6 analyzes the need of a framework or dedicated language for writing model
transformations and shows the problems that usually occur when writing model transfor-
mations with general purpose C#-code. These problems arise from the cyclic nature of
many models (section 6.1) and the need of correspondence links (see section 6.2), from in-
heritance relations of some model elements (see section 6.3), from rather complex patterns
(see section 6.4) or from optimizations over various non-deterministic results (see section

1http://nmf.codeplex.com

3

http://nmf.codeplex.com

4 1. Introduction

6.5). Furthermore, some problems known from existing model transformation approaches
are listed like the need for Higher-Order Transformations (see section 6.6), Transformation
composition (section 6.7) and Testing of transformations, see section 6.8. Finally, section
6.9 concludes this chapter.

Chapter 7 introduces NMF Transformations and discusses how it solves the problems
from chapter 6 in a way that is natural to C# developers. Section 7.1 first introduces the
semantic model behind NMF Transformations. Next, section 7.2 introduces the archi-
tecture of NMF Transformations, followed by the stage model in section 7.3. Section
7.4 introduces the NMF Transformations Language (NTL), the internal DSL built
on top of NMF Transformations. However, NMF Transformations/NTL is not a
solution for each and every problem and thus, section 7.5 explains which problems cannot
or were not tackled so far. Section 7.6 concludes the efforts on NMF Transformations.

Chapter 8 discusses how features of NMF Transformations, specifically the language
features of NTL impact on the maintainability of the resulting model transformations.
To accomplish this, the maintainability of model transformations is broken down into
the quality attributes of model transformations from section 3.4 that are reviewed with a
focus on maintainability in mind. The sections of this chapter go through these quality
attributes and discuss the impacts of the language features and discuss possible needs of
further evaluation.

The next three chapters introduce the case studies to address the further evaluation men-
tioned in chapter 8. The first two of them come from the Transformation Tool Contest
2013 (TTC2). The TTC 2013 consisted of three case studies but the third case is more
closely related to NMF Optimizations that is described in a separate technical report
[Hin13]. The last case study is a case study from the industry, from ABB Corporate
Research.

Chapter 9 describes the first TTC case study which has been the Flowgraphs case. The
goal of this case was to generate a control flow graph and data flow graph out of Java code
model. The case is explained in more detail in section 9.1. Section 9.2 explains the planned
evaluation for this case study. Next, section 9.3 explains the NMF solution to this case,
before section 9.4 also introduces the other solutions, but in a very brief manner. Section
9.5 gives an idea of how a solution of this case could look like in general purpose code.
Section 9.6 reports the results of this case on the TTC workshop. Section 9.7 performs
the evaluation of this case study with respect to the evaluation criteria from section 9.2.1
and finally section 9.8 concludes this case study.

Chapter 10 describes the Petri Nets to State Charts case study. The structure of this
chapter is the same as the previous chapter except that there is no section on a solution
of this case study in general purpose code this time. The rest of the chapter is exactly
structured in the same way.

Chapter 11 describes the case study from ABB Corporate Research. It consists of writing
an extensible code generator for OPC UA which is a communication standard from the
Open Platforms Communications Group3 (OPC) that is largely used in automation. At
first, section 11.1 briefly introduces the Address Space Model of this standard. Next,
section 11.2 describes the transformation that is to be created. Same as in the other case
studies, section 11.3 explains the planned evaluation for this case study, before section
11.4 describes the solution with NMF Transformations. Section 11.6 performs the
validation in regard to the previously defined validation criteria and finally section 11.7
draws conclusions from this case study.

2http://planet-research20.org/TTC/
3https://www.opcfoundation.org/

4

http://planet-research20.org/TTC/
https://www.opcfoundation.org/

1.3. Contribution 5

The validation results of the three case studies are summarized in chapter 12. At first,
the three case studies for the validation are compared to each other to get insights how
to classify their results. This is done in section 12.1. The folowing section each deal
with one of the quality attributes defined by van Amstel that needed further validation (as
discussed in chapter 8). The understandability is discussed in section 12.2, the modifiability
is the subject of section 12.3 before sections 12.4 and 12.5 deal with the consistency and
conciseness.

Finally, chapter 13 concludes this thesis and summarizes the results in section 13.1. Section
13.2 shows up assumptions and limitations of this work. Finally, section 13.3 looks forward
to future work.

The master thesis also contains some appendix chapters that take a further look at other
aspects but have not included in the main part as they cover topics not as closely related
to the main contribution.

Chapter A introduces the open-source project NMF and briefly introduces the parts it
consists of. Chapter B gives some more implementation details on NMF Transforma-
tions. Thus, it can be used as a reference to see the full diagrams when only parts will be
presented in chapter 7. Chapter C shows the implementation of the example transforma-
tion cases from section 4 with NTL. These implementations are referred to in chapter 7
and thus, one may use this chapter as reference to see the context in which these parts are
used originally. Chapter D collects the data from the TTC. This includes the results from
the open peer reviews as well as comments and remarks on NMF Transformations that
were made on the TTC conference. This chapter is also for reference. Chapter E contains
the evaluation sheet for the ABB case study.

A possible way to measure the maintainability of code is the use of metrics as discussed
in chapter F. As NMF Transformations is an internal DSL, section F.1 discusses how
the metrics that are measured by Visual Studio apply to model transformations created
by NMF Transformations. Section F.2 tries to adapt existing metrics for model trans-
formation languages to NMF Transformations. However, these metrics somehow fall
out of the range of this master thesis and are thus put into the appendix.

1.3. Contribution

The main contributions of this master thesis are as follows:

• Refactoring/restructuring of NMF Transformations: As NMF Transfor-
mations is an open-source framework that existed before this master thesis started,
the contribution of this master thesis is explained here in a bit more detail. NMF
Transformations is a part of NMFwhich is a set of projects aiming to support
model-driven software development at the .NET platform (see appendix, chapter A
for details). The whole project was initiated in July 2012 by myself. I am also the
only one who contributed to this project so far. By the end of 2012, the Trans-
formations project was already able to run the toy example transformations that
are also shown in this thesis (see section C). However, this thesis is the first docu-
ment to describe NMF Transformations. As a consequence, many design flaws
were detected during the writing process to describe NMF Transformations. As
an example, the clear separation of framework and internal DSL on top of it is an
outcome of the master thesis.

• Validation: The biggest contribution of this master thesis is the validation of NMF
Transformations in the three case studies presented in chapters 9, 10 and 11.

5

6 1. Introduction

With these case studies, NMF Transformations is validated against other state-
of-the-art model transformation languages and tools. The discussion on metrics as in
the appendix can also be seen as a minor contribution of this master thesis towards
the NMF Transformations approach to maintainable model transformations.

• Optimization: Furthermore, to satisfy the optimization problems that are pre-
sented in section 6.5, NMF Optimizations was created. Initially, the intention
was to implement the optimization framework as a part of NMF Transforma-
tions. It turned out that it was easier to create a separate project and integrate
both projects with each other, allowing an easier separate usage. However, NMF
Optimizations also introduced a lot research questions that would have blown the
space limitations of this thesis. Thus, NMF Optimizations is only described in a
separate technical report [Hin13].

Furthermore, a contribution is to review the metrics for object-oriented design implemented
in Visual Studio for their usage with NMF Transformations. Adaptions from existing
metrics for model transformations are discussed. However, this topic is not as closely
related to the maintainability evaluation and thus, this contribution can be found in the
appendix (chapter F).

1.4. How to read this thesis

Dependent on personal interest and background, only parts of the master thesis might be
important to readers of this master thesis.

• C# developers that need to specify model transformations: As model-driven
software development is quite unpopular in the .NET community, most C# devel-
opers may find the foundations on model-driven software development and model
transformation with QVT useful (section 3.1 and 3.2). To understand the code ex-
amples, reading the chapter 4 might be helpful. These transformations are used
in chapter 6 where the problems of model transformations are described and how
one would solve these problems with C# code. In the following chapter 7, NMF
Transformations is introduced that tries to overcome the problems from chapter
6. Chapter 11 shows how NMF Transformations is applied to create a code gen-
erator in an industrial context to replace general purpose solutions. If Visual Studio
is used as the IDE, the chapter F might be helpful as it instructs how to read the
metrics computed by Visual Studio in scenarios incorporating NMF Transforma-
tions.

• Transformation developers of other model transformation languages: For
transformation developers that want to get an overview on NMF Transforma-
tions, the advise is to read chapter 5 to understand why to create a transformation
language as an internal DSL. Chapter 6 summarizes the problems in model trans-
formation that NMF Transformations tries to solve. Chapter 7 introduces the
approach of NMF Transformations. To understand this chapter, it might be
helpful to read about the used language features from C# in section 3.3 first. Next,
chapter 8 discusses how these concepts influence the quality attributes for model
transformations by van Amstel. With this background, the case studies from the
TTC in chapters 9 and 10 might be interesting to see how NMF Transforma-
tions compares to other model transformation languages. Further, the ABB case
study from chapter 11 may give pointers that allow to extend the scope of model
transformations if the model transformation language is not tight to a specific meta-
modelling foundation. Finally, chapter 12 summarizes the validation results and
shows the advantages and disadvantages of NMF Transformations.

6

1.4. How to read this thesis 7

• Developers of transformation languages: For developers of other transforma-
tion languages, the master thesis might be helpful to determine the concepts of
NMF Transformationsand how they impact on the maintainability of the result-
ing model transformations. The most important chapters are here the case studies on
the TTC where the influence on the language features on the model transformation
quality attributes by van Amstel is discussed. Also the chapters 5 and 6 might be
interesting as they describe the problems that may occur in model transformations
that any model transformation language must cope with. Next, chapter 7 describes
the language features of NMF Transformations. This description might improve
the understanding of the TTC case studies. As an internal DSL, NTL uses the
language features of C#. The more sophisticated language features are described in
section 3.3.

7

2. Related Work

Model transformations are a very important artifact in model-driven software engineering
and as MDE gains acceptance in both research and industry [MFM+09], it is crucial to
look at the maintenance. Sendall and Kozaczynski even state model transformations as
the ”heart and soul of model-driven software development” [SK03a]. Thus, there are a
plethora of MTLs available [CH06, SS09].

For some of these model transformation languages, implementations exist for the cases of
the TTC and thus, their advantages and disadvantages compared with NTL are analyzed
in chapters 9 and 10.

2.1. MTLs with external DSL

External DSLs are entirely new languages. This yields the benefit that developers of the
transformation language do not have to respect any constraint for the language. They can
design their MTL in a way such that writing a model transformation feels as natural as
possible for a transformation developer. However, all the tools that support development
in this language also have to be created, many of them from scratch. This includes a
parser, a compiler or interpreter, a debugger, a profiler and several features that model
editors use to have such as syntax highlighting or code completion. Some of these features
like a parser and editors with syntax highlighting can be generated by tools like xText
[EV06]. However, others like a debugger usually cannot be generated. Furthermore,
building a debugger for declarative transformation languages is often complicated not
only because of a complex implementation but mainly because the execution semantics of
the transformation language makes it hard or even impossible.1 Given that none of the
MTLs has achieved a great acceptance, this effort is put rather seldom. As a consequence,
the debugger support while writing a model transformation is rather poor if there is a
debugger present at all. This gets even worse when it comes to more sophisticated tool
support like a profiler. NTL as an internal DSL inherits the tool support for C# including
rich debugging, refactoring and profiling support.

Examples of external MTLs are the languages of QVT that are presented in the sections
3.2.1 and 3.2.2 in more detail. These languages are standardized by the OMG. However,
they lack of good tool support. Furthermore, QVT-O copies many concepts from general
purpose languages and QVT-R has the problem that there are hardly implementations for
an engine available.

1A further discussion of external DSLs for model transformation can be found in section 5.2

9

10 2. Related Work

2.2. Model Transformation as Graph Transformation

Models can also be seen as object graphs. Thus, graph transformation languages also
attracted quite a lot of interest transforming models in the context of model-driven en-
gineering. A prominent example is GrGen.NET [GK08] that has won multiple awards
at the Transformation Tool Contest 20112. GrGen.NET originally came from compiler
construction but the nature of a generic graph rewriting tool also allows its usage as a
model transformation engine [GDG08]. Graph transformation languages often share the
disadvantages of external DSLs as they can be seen as graphical languages. However, some
concepts like simple (e.g. string) attributes and object inheritance do not transfer well to
graph transformation.

An important flavor of model transformation by graph transformation is Triple Graph
Grammars (TGGs). Originally proposed in the nineties [Sch95], TGGs serve to transform
a source graph into a target graph using graph transformation rules that consist of a
graph triple. The left hand side (LHS) graph specifies patterns that the transformation
engine looks for during a transformation processing and replaces elements matching to the
graph elements on the right hand side (RHS) where elements of the LHS and the RHS
have a certain correspondence conforming to the correspondence graph. These graphs can
be specified in a single graph, e.g. by using stereotypes to mark elements of the LHS,
RHS and correspondence graph. The advantage of this procedure is that the roles of the
LHS graph and the RHS graph can easily be interchanged and thus, the transformation
is bidirectional [GGL05]. Furthermore, the specification of a TGG can also be used for
a transformation that supports check operations. The applicability of this approach for
model transformations has been shown in [GGL05, Kön05]. A further major advantage is
that model transformations with TGGs can be specified visually by creating graphs. The
tool support for model transformations using TGGs has been surveyed in [KS06].

An example of a TGG implementation that tries to overcome the limitations of model
transformation through graph transformation is eMoflon for which there is a proof-of-
concept solution for the Flowgraphs case. This solution (and thus also eMoflon) is
discussed in chapter 9.

2.3. MTLs with internal DSL

Internal DSLs use another language, usually a general purpose language, as host language.
They are usually implemented as libraries for that host language with an API that can
be used similar to an entirely new language.3 Because they allow a very flexible syntax,
dynamic or scripting languages like Python or Ruby are often used as host languages
[CMT06]. However, the maintainability of a software artifacts also depends on the back-
ground of their users and dynamic languages are not as popular as mainstream languages
like Java or C#. Furthermore, the tool support for such languages is often not as good.

Another language that is often used as a host language for internal MTLs is Scala [Pic08,
Slo08]. Besides the flexible syntax, Scala is a strongly typed language and internal
MTLs based on it like ScalaMTL can automatically inherit this type safety [GWS12].
ScalaMTL uses implicit conversions for tracing. However, the concept of implicit con-
versions for tracing yields some problems, e.g. if multiple passes of a model transformation
are required.

2http://planet-research20.org/ttc2011/index.php?option=com_content&view=article&id=

148&catid=17&Itemid=203
3A further discussion of internal DSLs for model transformation can be found in section 5.3

10

http://planet-research20.org/ttc2011/index.php?option=com_content&view=article&id=148&catid=17&Itemid=203
http://planet-research20.org/ttc2011/index.php?option=com_content&view=article&id=148&catid=17&Itemid=203

2.4. Comparison of MTLs 11

There is a continuous pass between shallow internal DSLs and ordinary libraries of the
host languages. An example of the latter is Paisley [yWL12] which demonstrates a query-
command syntax [Fow10] as pure library for Java. However, this transformation language
misses important features like the avoidance of cycles.

One of the most important properties of an internal DSL is its ability to provide a concise
syntax for the model transformation tasks. As internal DSLs have limits in their syntax,
this may get difficult.

2.4. Comparison of MTLs

Table 2.1 tries to compare a number of model transformation languages (external and
internal DSLs) for their support of the model transformation problems in chapter 6. This
comparison is very rough as it only looks whether there exist concepts at all to solve these
problems. To review these languages how well the offered concepts solve these problems is
a research question on its own. Some further observations and thus comparisons to other
model transformation languages are made in the TTC case studies (see chapters 9 and
10).

Based on this comparison, it may seem that external MTLs are generally suitable for
model transformation tasks. As a reason, these languages have been designed specifically
for these tasks but do not have any restrictions for their syntax. However, this comes at
the price of poor tool support as all tool support has to be created almost entirely new.
In contrast, internal MTLs can inherit the tool support provided for their host language.
The more popular the host language, the better the tool support usually is. However, this
discussion is intensified in the TTC case study chapters 9 and 10.

Furthermore, table 2.1 reads that NMF Transformations is the only solution that
has built-in support for optimization tasks. This support is provided by NMF Opti-
mizations that is not described in this master thesis but in a separate technical report
[Hin13]. The reason that other MTLs do not have support for optimization tasks may
be that domain-specific optimizations have rarely been a subject of research. To the best
of my knowledge, NMF Optimizations is the only framework providing support for
domain-specific optimization so far and it has not been evaluated in practise. Thus, the
fact that NMF Transformations is the only solution with optimization support should
be dealt with care. However, it is a clear advantage of NMF Transformations that
extensions like NMF Optimizations are possible at all. For external MTLs, this is much
more complicated and not possible without an access to the solutions source.

The table also ignores the modeling framework the MTLs are based on, as most MTL are
indeed based on certain modeling frameworks. In contrast, NMF Transformations can
operate on plain objects either as input or output models. This has several consequences.
On the one hand, NMF Transformations cannot rely on the structure that is provided
by a modeling framework. On the other hand, the scope of NMF Transformations is
widened.

2.5. Maintainability of model transformations

Maintainability is an important aspect when developing a MTL if not the most important
one. Van Amstel et al. have conducted a complex analysis [vAVDB11a, vA11] for ATL,
QVT-O, XTend and ASF+SDF. The analysis in this thesis applies similar techniques for
NMF Transformations. As the master thesis is the first document to describe NMF
Transformations, it has not been evaluated before.

11

12 2. Related Work

Name H
o
st

la
n
g
u
a
g
e

C
o
rr

e
sp

o
n
d
e
n
c
e

&
T

ra
c
in

g

C
y
c
li
c

o
b

je
c
t

m
o
d
e
ls

In
h
e
ri

ta
n
c
e

P
a
tt

e
rn

s

O
p
ti

m
iz

a
ti

o
n

ta
sk

s

H
ig

h
e
r-

O
rd

e
r

T
ra

n
sf

o
rm

a
ti

o
n

s

T
ra

n
sf

o
rm

a
ti

o
n

C
o
m

p
o
si

ti
o
n

T
e
st

in
g

a

QVT-O N|A X − Xb − − − X X
QVT-R N|A X X −c X − ? − −
ATL N|A X X X X − X X −
ETL N|A X X X X − − X −
RubyTL Ruby X ? ? − − − ? ?
FunnyQT Clojure X X Xd Xe − − ? ?
ScalaMTL Scala X − ? X − − ? ?
Paisley Java ? ? ? X − − ? ?
NMF C# X X X Xf Xg − X X

X = Dedicated support
− = No dedicated support

? = Not described in the literature, but possible extension

aAs black-box testing is always possible, this asks for a unit testing support
bDisjunct mappings yield a maintenance problem (see section 6.3).
cQVT-R solves this problem through pattern matching (see section 6.3). However, there is no inheritance

concept between relations.
dWith the same restrictions as QVT-O
eUnlike ATL and ETL, FunnyQT supports a single input element type, only. However, the Petri Nets to

State Charts case showed that FunnyQT is capable of more complex patterns through embeddings in
general purpose code.

fWith the Relational extensions, see section 7.4.6
gWith NMF Optimizations, see [Hin13]

Table 2.1.: Comparison of MTLs

12

2.5. Maintainability of model transformations 13

One important approach to analyze and therefore eventually improve the maintainability
of model transformation is the definition of metrics. Thus, some approaches [vAvdB10,
KGBH10, vAvdB11b] have defined maintenance metrics for transformations written in
several MTLs. A discussion on these metrics can be found in the appendix of this thesis
(see section F).

There are other approaches to analyze transformation languages for more specific at-
tributes like modularity. For model transformations, this is achieved through composition
of model transformations. The techniques for composition are analyzed in [CM08, Wag08,
CM09, WVDSD10]. [WKK+12] provides a comparison framework for these approaches.

13

3. Foundations

In this chapter, some foundations are introduced that this thesis relies on. At first, the
approach of model-driven software development is briefly explained in section 3.1. Second,
in section 3.2 the two transformation languages with the Query View Transformation
(QVT) standard by the OMG are briefly introduced. This is made because these languages
are used as a reference. Last, in section 3.3 some more sophisticated language features
of C# are introduced that are massively used in the API of NMF Transformations.
Section 3.4 introduces the quality attributes of model transformations that will be used to
guide through the validation sections of this master thesis.

3.1. Model-driven software development

Model-driven software development (MDSD) or Model-driven engineering (MDE) is an ap-
proach to handle the problem of ever-increasing complexity in the software development.
Instead of code, domain specific models are the central software artifacts. All other soft-
ware artifacts like code, documentation or test cases are then generated from the models
using transformations. To make transformations possible, the models have to conform to
a formal definition. As this formal definition is once again a model in the domain of meta-
modeling, it is called a metamodel. It describes the structure of the models that conform
to this metamodel. As metamodels in turn are models in the domain of metamodeling,
they also have their own metamodel, referred to as the meta-metamodel. Most available
meta-metamodels are self-descriptive. This prevents endless conformance sequences. The
OMG standardized the meta-metamodel MOF (Meta Object Facility). However, the most
common meta-metamodel in practice is Ecore, an implementation of the EMOF (Essen-
tial MOF) standard. Ecore is implemented as part of the Eclipse Modeling framework
(EMF) [MEG+03]. ling, it is called a metamodel. It describes the structure of the models
that conform to this metamodel. As metamodels in turn are models in the domain of
metamodeling, they also have their own metamodel, referred to as the meta-metamodel.
Most available meta-metamodels are self-descriptive. This prevents endless conformance
sequences. The OMG standardized the meta-metamodel MOF (Meta Object Facility).
However, the most common meta-metamodel in practice is Ecore, an implementation of
the EMOF (Essential MOF) standard. Ecore is implemented as part of the Eclipse Mod-
eling framework (EMF) [MEG+03].

Sometimes this structural description encoded in a metamodel still allows to create models
that are not valid as they do not represent the concepts in the reality properly. To restrict

15

16 3. Foundations

the validity of models, static semantics is used to ideally only allow models that have a
correspondence in reality. The static semantic is usually expressed through invariants that
have to hold for specific objects. These invariants are typically expressed using the Object
Constraint Language (OCL). Static semantics restrict models, so they are conformant to
a metamodel. In contrast, dynamic semantics describes the correspondence to objects or
concepts in the reality. Dynamic semantics are usually expressed in natural language.

Models that represent systems are usually hand-crafted in editors. There are two fun-
damentally different types of editors, graphical and textual editors. Graphical editors
provide a graphical user interface and show the models as diagrams of some sort. The
model-driven developer may then edit the models by editing the diagram or creating new
diagrams. Textual editors rely on a grammar that describes how models can be described
in text. The syntax of these editors, either as textual syntax or as description of how the
graphs should look like, is referred to as concrete syntax as they describe what is visible
to the model developer. In contrast, the metamodel and the static semantics are referred
to as abstract syntax, as they describe the abstract concepts that are expressed through
the concrete syntaxes. An abstract syntax can have multiple concrete syntaxes as there
might be multiple editors to edit the same models. Most often, there are multiple editors
that each edit different parts of the model. Abstract and concrete syntax together form
domain specific languages (DSLs).

The models obtained from the various editors are then transformed to either other models
or traditional software artifacts. This process is usually supported by Model Transfor-
mation Languages (MTLs). In many cases, the overall abstraction level of the model
representing the whole system is relatively high and thus model transformations trans-
forming these models directly to the desired software artifacts as code are very complex.
Moreover, it is not only the semantics that has to be transformed, it also is the syntax.
Therefore, it is a widely adopted approach to split the transformation of the semantics
from the transformation of the syntax. Thus, a metamodel is created that describes the
structure of the target software artifact. A model transformation can then transform the
input system level model to a model of that target semantic whereas a separate transfor-
mation takes the model with the semantics already fit to the target software artifact and
only transforms the syntax, i.e. prints the model in the format according to the type of
software artifact that is to created. These two types of model transformations fundamen-
tally differ. The first one takes models as inputs and creates models. It is referred to as
Model-to-Model-transformation (M2M-transformation) whereas the latter one is referred
to as Model-to-Text-transformation (M2T-transformation).

As the goal of M2T-transformations is to fit a model in a given structure, these transfor-
mations contain a lot of static information like keywords or the structure of the targeted
format and are thus mostly formulated as text templates. However, as they aim to trans-
form syntax rather than semantics, it is often difficult to include complex transformation
logic into these transformations.

In contrast to M2T, M2M-transformations transform models conforming to one or multiple
source metamodels into a model conforming to a target metamodel. Usually, the metamod-
eling foundation is used to load and save models to files. But the transformations usually
do not care how the models are serialized. The focus is rather set to the transformation
of semantics. There are different paradigms of model transformations present and a whole
row of different transformation engines. They can roughly be split up transformation ap-
proaches using dedicated transformation languages as external DSLs and approaches using
any language as host language for an internal DSL that is used to describe the transforma-
tions. Some examples of each are presented in chapter 2. However, a prominent example
of external DSLs for model transformation is QVT that actually consists of two external

16

3.2. Query-View-Transformation (QVT) 17

DSLs. The whole concept of QVT is explained in more depth in the section 3.2.

3.2. Query-View-Transformation (QVT)

QVT [Obj11] is a standardized MTL designed by the OMG. Model transformations in
QVT are usually written in one of the languages QVT Operational (QVT-O) or QVT
Relational (QVT-R). QVT Operational is described in more detail in section 3.2.1. QVT
Relational is described in more detail in section 3.2.2. Both of these languages are meant
to be compiled to QVT Core, a language not intended to be written by humans directly.
An implementation of a transformation engine would then be able to execute the QVT
Core code after QVT-R or QVT-O have been compiled to QVT Core. However, existing
implementations only execute either of them directly. Instead, approaches exist that can
translate QVT-R into QVT-O [RRMB08].

The concepts of the QVT languages are explained using an example transformation from
UML models to a relational database scheme. The transformation code is taken from
the QVT specification by the OMG [Obj11]. However, the description here is only an
overview. For more details see the specification [Obj11].

3.2.1. QVT Operational

QVT-O is an imperative MTL based on mapping rules. Much like imperative languages
like Java, Mappings in QVT-O specify how a model element is transformed into another
in an imperatively manner. For this purpose, the side-effect free query language OCL
(Object Constraint Language) has been extended with some imperative constructs like
statements, assignments and loops. In this way, all the OCL language constructs can still
be used when writing model transformations.

Transformations

Transformations in QVT-O need to specify the domains used as input or targeted domain.
There can be multiple input or target domains specified. Furthermore, much like usual
programs in imperative languages, a transformation has to specify a main method.

1 modeltype UML uses SimpleUml (”http :// SimpleUml ”) ;
2 modeltype RDBMS ” s t r i c t ” uses SimpleRdbms ;
3
4 transformation Uml2Rdbms(in uml :UML, out rdbms :RDBMS) ;
5 // the entry po int f o r the execut ion o f the transformation
6 main () {
7 uml . objectsOfType (Package)−>map packageToSchema () ;
8 }

Listing 3.1: A transformation in QVT-O

Listing 3.1 shows an example of a transformation in QVT-O (taken from [Obj11]). It
transforms UML models into relational database schemes. The statement in line 7 is used
to call Mappings. These concepts are explained in the following paragraph.

Mappings

Mappings are the heart of a transformation in QVT-O. They define how an element (or
multiple) should be mapped to another element. Although some dependencies and guards
can be set declaratively, the main part of the Mapping is written in an imperative manner.
Listing 3.2 shows an example of how such a Mapping looks like.

17

18 3. Foundations

1 mapping Package : : packageToSchema () : Schema
2 when{ s e l f . name . s tart ingWith () <> ” ”}
3 {
4 name := s e l f . name ;
5 ta b l e := s e l f . ownedElement −> map c l a s s 2 t a b l e () ;
6 }

Listing 3.2: A example Mapping in QVT-O

Mappings are the language features that differ most from pure object-oriented program-
ming. They consist of a context, optional multiple parameters and a return type. Unlike
methods in object-oriented programming, their execution is traced. QVT-O has a trace
model where it saves which elements have been mapped together with the result of that
Mapping. Transformation developers can access these trace links by the language feature
resolve. However, resolve only looks at trace links already created when the execution is
at this point. If the trace link is intended to see all trace links, it is possible to use another
language feature namely late resolve that resolves the trace link after all Mappings
have been executed. The result that is written into the trace by default, is a newly created
model element conforming to the return type of the Mapping. However, it is possible to
overwrite this behavior. For this purpose, a Mapping can consist of three section. The first
section, the init section, is executed before the local implicit result variable is written
to the trace and therefore can be overwritten. The populate section of a Mapping is to
contain code that populates the properties of the resulting elements. Finally a dedicated
end section is executed before the execution flow leaves the Mapping. The structure of a
Mapping is also shown in listing 3.3. There, X denotes the type that is decorated by the
Mapping. Furthermore, the listing shows the syntax for multiple target elements (whereas
the syntax for a single result is shown in listing 3.2).

1 mapping<dirk ind0> X : : mappingname
2 (<dirk ind1> p1 : P1 , <dirk ind2> p2 : P2) : r1 : R1 , r2 : R2
3 when{ . . . }
4 where { . . . }
5 {
6 in i t { . . . }
7 populat ion { . . . }
8 end { . . . }
9 }

Listing 3.3: The structure of a QVT-O mapping

Here, the when-clause denotes a precondition whereas the where-clause may contain a
post-condition.

Queries, Constructors and Helpers

Queries, Constructors and Helpers are constructs to help structure transformations and
reuse some parts in multiple transformations. Whereas Mappings have to reside in the
same file as the transformation, Queries, Helpers and Constructors can be swapped out to
other files, called libraries. Helpers and Queries are methods that can be attached to a type.
They can have multiple input parameters and a return type but do not have to. They
can actually be imagined as being much like methods in object-oriented programming
besides the fact that they can be defined outside the class they use as context object.
The difference between Helpers and Queries is that Helpers may have side effects on

18

3.2. Query-View-Transformation (QVT) 19

their parameters whereas Queries must not. Constructors are very similar, much like
constructors in object-oriented programming they build a model element using several
parameters.

Intermediate data

QVT-O has the handy ability to extend metaclasses by properties only used during a
transformation. Alternatively, new intermediate metaclasses can be created that are also
only valid during transformation.

1 intermediate class Lea fAtt r ibute
2 {
3 name : S t r ing ;
4 kind : S t r ing ;
5 a t t r : Att r ibute ;
6 } ;
7 intermediate property Class : : l e a f A t t r i b u t e s
8 : Sequence (Lea fAtt r ibute) ;

Listing 3.4: Definition of Intermediate Properties and Classes in QVT-O

Listing 3.4 shows an example where Intermediate Classes and Properties are used to flatten
the class hierarchies.

Disjunct Mappings

To e.g. support inheritance, QVT-O includes a mechanism to define a mapping as dis-
junction of an ordered list of other mappings. Instead of the disjunct mapping, the first
mapping whose guard (when-clause) returns true.

1 mapping UML: : Feature : : convertFeature () : JAVA : : Element
2 disjuncts convertAttr ibute , convertOperat ion , convertConstructor

() {}
3
4 mapping UML: : Att r ibute : : conver tAtt r ibute : JAVA : : F i e ld {
5 name := s e l f . name ;
6 }
7 mapping UML: : Operation : : convertConstructor : JAVA : : Constructor
8 when{ s e l f . name = s e l f . namespace . name ;} {
9 name := s e l f . name ;

10 }
11 mapping UML: : Operation : : convertOperat ion : JAVA : : Method
12 when{ s e l f . name <> s e l f . namespace . name ;} {
13 name := s e l f . name ;
14 }

Listing 3.5: A disjunct mapping in QVT-O

In the example of listing 3.5, the disjunct mapping feature is used to transform a UML
feature into a Java feature. The mapping disjunction makes it possible to avoid type casts,
which are considered as being hard to maintain. Instead, it is the task of the transformation
engine to check the types and the preconditions of the disjuncted mappings.

19

20 3. Foundations

Transformation composition

QVT-O supports the composition of transformations. In general, there are two popular
ways to compose a transformation of multiple others:

1. Transformation chaining: This means that transformations are executed one after
another.

2. Transformation composition: A transformation extends another transformation by
adding or removing elements.

Transformation composition is discussed in more detail in section 6.7.

In QVT-O, each of these composition techniques is represented by a dedicated mechanism.
To use transformation chaining, a transformation that uses other transformations has
to declare this usage at its head using the access keyword. In the main method, the
other transformation can then be instantiated and called using the transform method.
This method returns a status with information whether the transformation was successful.
To extend a transformation, the extending transformation has also to declare that in
the header using the extends keyword. An extension can define further transformation
elements like mappings and replace the main method. Listing 3.6 shows an example.

1 transformation CompleteUml2Rdbms (in uml :UML, out rdbms :RDBMS)
2 access transformation UmlCleaning (inout UML) ,
3 extends transformation Uml2Rdbms(in UML, out RDBMS) ;
4
5 main () {
6 var tmp : UML = uml . copy () ;
7 // performs the ”c l e a n in g ”
8 var r e t code := (new UmlCleaning (tmp))−>trans form () ;
9 i f (not re tcode . f a i l e d ())

10 uml . objectsOfType (Package)−>map packageToSchema ()
11 else raise ”UmlModelTransformationFailed ”;
12 }

Listing 3.6: Transformation composition in QVT-O

In the example, the above Uml2Rdms from listing 3.1 has been extended by an in-place
cleaning transformation. The only extension that the CompleteUml2Rdbms does is to re-
place the main method and chain the cleaning transformation first.

3.2.2. QVT Relational

QVT-R is a declarative MTL. Rather than specifying how elements of the source model are
to be transformed into elements of the target model, the transformation rules in QVT-R
form relations between them. These relations are then to be enforced by the transformation
engine implementation. In this way, a QVT-R transformation rather synchronizes two
models with several synchronization rules rather than explicitly transforming the input
model. In this way, QVT-R is an example of a declarative transformation language that
even provides support for bidirectionality.

Relations in QVT-R

The relations defined by QVT-R act as constraints. This procedure can be seen as similar
to math relations as a (binary) relation from elements of two sets M1 and M2 is defined as
R ⊂M1×M2. In a similar way, the relations in QVT-R limit the input and target domain

20

3.2. Query-View-Transformation (QVT) 21

elements. However, in some cases it makes sense to limit the scope of these constraints
and allow exceptions, e.g. when there is another constraint that has to hold for a certain
element. Furthermore, to divide implementations of such constraints a bit, relations can
further define other relations that need to hold, also. This yields the basic structure of a
QVT-R relation. One or many domains can be specified that are equivalent to the sets
M1 and M2 in the above mini-example. A relation can have a when-clause specifying when
the constraint is enforced and a where-clause specifying other constraints that need to be
enforced. Listing 3.7 shows an example relation (taken from [Obj11]).

1 relation ClassToTable /∗ map each p e r s i s t e n t c l a s s to a t a b l e ∗/
2 {
3 domain uml c : Class {
4 namespace = p : Package {} ,
5 kind=’ Pe r s i s t en t ’ ,
6 name=cn
7 }
8 domain rdbms t : Table {
9 schema = s : Schema {} ,

10 name=cn ,
11 column = c l : Column {
12 name=cn+’ t id ’ ,
13 type=’NUMBER’} ,
14 primaryKey = k : PrimaryKey {
15 name=cn+’ pk ’ ,
16 column=c l }
17 }
18 when {
19 PackageToSchema (p , s) ;
20 }
21 where {
22 AttributeToColumn (c , t) ;
23 }
24 }

Listing 3.7: A QVT-R relation with two domains

The example shows the relation that maps persistent classes to tables in a transformation
that transforms UML models to relational database schemes. The domain sections specify
patterns that form the equivalent to the sets M1 and M2, the set of domain elements to
which the relation should be applied. The relation further specifies that for each Class in
the uml model. There should be a corresponding Table element in the rdbms model that
has the structure specified in the according domain section, provided that the package
of that class corresponds (stand in a relation to) the schema of the table. Furthermore,
the attributes of the class and the columns of the table have to conform to the relation
AttributeToColumn.

Furthermore, there are different types of domains, domains where transformation engine
should only look for patterns (checkonly domains) and domains where the transforma-
tion engine may create model elements to enforce the patterns (enforce domains). Some
implementations even do not allow to not specify the type of the domain.

Top relations

Some relations within a transformation may be specified as top relations. These top
relations are the relations that need to hold for every matched elements. Thus, they may

21

22 3. Foundations

not specify a when-clause. Relations that are not marked as top relations are only enforced
if they are called explicitly in a where section of another relation. Listing 3.8 [Obj11] again
shows the above transformation from UML models to database schemes. The relations
PackageToSchema and ClassToTable are enforced for every package or class that match
the relations pattern, respectively. The third relation AttributeToColumn is only enforced
when called explicitly from another relation.

1 transformation umlRdbms (uml : SimpleUML , rdbms : SimpleRDBMS) {
2 top relation PackageToSchema { . . . }
3 top relation ClassToTable { . . . }
4 relation AttributeToColumn { . . . }
5 }

Listing 3.8: A QVT-R transformation with top relations and non-top relations

3.3. C# language features

An internal DSL has to make use of the features of the host language it is embedded in.
Being implemented as library conforming to the Common Language Specification (CLS),
NMF Transformations can have various host (.NET-)languages. However, in this thesis
we concentrate on C# as host language. Therefore, this section gives an overview about
some of the rather special language features of C#, especially in comparison to Java.

Generally recognized as an imperative language, C# has changed in the last years and
continuously got elements known from functional programming. Most of the features that
are presented in the subsequent subsections were introduced with C# 3.0 which has been
a part of the .NET framework 3.5 released in November 2007. Both the implementation
but especially the public API of NMF Transformations use these features massively
and so they are described here in a bit more detail. The entire documentation can be
found in the MSDN1.

3.3.1. Local type inference

C# allows local type inference for local variables. This means that instead of declaring
a variable with its type, the compiler can automatically interfere the type of the local
variable by its initialization. Thus, for example the following two statement blocks in
listing 3.9 are equivalent.

1 string a = ”” ;
2 int b = 1 ;
3 S t r i ngBu i l d e r sb = new St r i ngBu i ld e r () ;
4 Guid uid = Guid . NewGuid () ;
5
6 var a2 = ”” ;
7 var b2 = 1 ;
8 var sb = new St r i ngBu i l d e r () ;
9 var uid = Guid . NewGuid () ;

Listing 3.9: Local type inference examples

Being purely syntactical sugar, the var keyword is mostly used to minimize the typing
effort. However, the coding guidelines of some companies (including Microsoft) avoid the

1http://msdn.microsoft.com/en-us/library/vstudio/618ayhy6.aspx

22

http://msdn.microsoft.com/en-us/library/vstudio/618ayhy6.aspx

3.3. C# language features 23

usage of this keyword as there is a threat that the developer is unaware of the type of a
variable.

The purpose of the var keyword is to support anonymous types as presented in the next
section.

3.3.2. Initialization lists and anonymous types

Initialization lists are used to simply initialize an object instance by setting its properties
without implementing a dedicated constructor. This makes the two statements in listing
3.10 equivalent.

1 var person = new Person () ;
2 person .Name = ”John ” ;
3
4 var person2 = new Person () { Name = ”John ” } ;

Listing 3.10: Object initializers in C#

The main purpose of this procedure is that the above statement in listing 3.10 can now
be written in a single line which is important for other language features like Language
Integrated Query (LINQ, see section 3.3.5).

These initialization lists further make it possible to use anonymous types by simply omit-
ting the type name. This can be used to avoid implementing a dedicated class that simply
consists of several properties. Anonymous types require to use the local type inference
with the var keyword as the name of these types is generated by the compiler and thus
unknown at development time.

1 Person john = . . . ;
2 Person marry = . . . ;
3
4 var couple = new { Husband = john , Wife = marry } ;

Listing 3.11: Using anonymous types in C#

3.3.3. Extension methods

Extension methods are another language feature of C# since version 3.0. It is syntactic
sugar to add methods to sealed types like interfaces. These extension methods are then
mapped to static methods that take the context object instance as first parameter. A
method is marked as extension method by decorating the first parameter with the this

keyword. The var keyword is just an instruction to the compiler to infer the type of a
local variable from the context.

Extension methods may only be defined as static methods inside of static classes (i.e.
classes that must not be instantiated). In order to use an extension method, the namespace
of the declaring class must be imported with a using statement.

3.3.4. Lambda-expressions (Closures)

One of the key differences of functional programming to imperative programming is the
treatment of functions as objects. Therefore, it is no surprise that these languages have
concepts to define functions very easily. Initially introduced in the lambda calculus
[Chu36, Chu40], lambda expressions are nowadays used in many functional programming
languages and since version 3.0 released in 2007 in C#. However, in the literature, they

23

24 3. Foundations

are often called Closures. Lambda expressions allow to define method within the context
of a method. In this way, a method implemented as a lambda expression can make use
not only of its own parameters, but can also refer to the parameters of the method it is
defined in. As the compiler (at least in C#) has to fill the gap between the definition of
that lambda expression involving other variables than just its own parameters, this may
be a reason that Lambda expressions are often called Closures. The transformation in an
object-oriented design is hidden to the developer by the compiler. This concept makes
it much easier to use higher order functions. As an example, listing 3.12 shows how the
higher order function Iterate that iterates a given function until it returns false could be
easily implemented.

1 public stat ic Action<T> I t e r a t e <T>(Func<T, bool> i terateAndTest)
2 {
3 return item => while (i terateAndTest (item)) {} ;
4 }

Listing 3.12: Usage of Lambda-expressions for higher-order functions

3.3.5. Monads

Monads are a concept initially taken from category theory, but have been applied to
functional programming in 1991. They consist of a type constructor, a unit function and
a bind function. The type constructor takes a type and puts it into a monadic container.
This container may decorate the type with some additional information. The unit function
is used to create an instance of the monadic container out of an instance of the decorated
type and the bind function composes two monadic containers to a new monadic container.

An example in C# is the IEnumerable<T> type that can be seen as a monadic container
of the type T. It describes a collection of items of type T that can be enumerated using an
enumerator obtainable from that interface. Here, the unit function is a function that wraps
an item of type T into a collection with exactly one item. The bind function is a method
that takes a collection and a function to obtain child collections and returns a collection
of child items. An example of how the bind function implemented as an extension method
could look like in presented in listing 3.13

1 public stat ic IEnumerable<U> Bind<T,U>(this IEnumerable<T> items ,
2 Func<T, IEnumerable<U>> func) {
3 foreach (var item in i tems) {
4 foreach (var subitem in func (item)) {
5 yield return subitem ;
6 }
7 }
8 }

Listing 3.13: An implementation for the bind function of the IEnumerable<T> monad

In the above code example, the yield return statements makes it possible to specify an
iterable collection (an IEnumerable<T> in .NET) without specifying an iterator. The
iterator is constructed by the compiler based on the method implementation. As this
language feature is not used in the public API of NMF Transformations, it is not
introduced here. Instead, a documentation can be found in the MSDN2.

However, monads in C# are a bit different. For performance reasons, the bind function has
been extended with an additional selector method and a third selection type. Furthermore,

2http://msdn.microsoft.com/en-us/library/vstudio/9k7k7cf0.aspx

24

http://msdn.microsoft.com/en-us/library/vstudio/9k7k7cf0.aspx

3.3. C# language features 25

it is named SelectMany rather than bind. A possible implementation of this method for
the IEnumerable<T> monad is presented in listing 3.14.

1 public stat ic IEnumerable<V> SelectMany<T,U,V>(
2 this IEnumerable<T> items , Func<T, IEnumerable<U>> func ,
3 Func<T,U,V> s e l e c t o r) {
4 foreach (var item in i tems) {
5 foreach (var subitem in func (item)) {
6 yield return s e l e c t o r (item , subitem) ;
7 }
8 }
9 }

Listing 3.14: An implementation for the bind operation of the IEnumerable<T> monad

If we consider the simple scenario where we have two lists of strings and want to have a
collection with all possible concatenations of these strings, we can simply write use our
extension method from listing 3.14, see listing 3.15.

1 IEnumerable<string> i tems1 ;
2 IEnumerable<string> i tems2 ;
3
4 foreach (var s in i tems1
5 . SelectMany (s1 => items2 , (s1 , s2) => s1 + s2)) {
6 Console . WriteLine (s) ;
7 }

Listing 3.15: Using the IEnumerable<T> monad with the LINQ query syntax

With this implementation of SelectMany, it is possible to use the query syntax of LINQ.
To make this possible, the bind operator SelectMany must be implemented as an extension
method and the namespace of the implementation class must be imported with a using
statement. The above example using the query syntax is demonstrated in listing 3.16.
The second from statement and the select statement are translated into a call of the
SelectMany extension method shown in listing 3.14.

1 IEnumerable<string> i tems1 ;
2 IEnumerable<string> i tems2 ;
3
4 var itemsCombined = from s1 in i tems1
5 from s2 in i tems2
6 select s1 + s2 ;
7
8 foreach (var s in itemsCombined) {
9 Console . WriteLine (s) ;

10 }

Listing 3.16: Using the IEnumerable<T> monad with the LINQ query syntax

However, the query syntax allows more flexibility. To use an enhanced syntax, other
extension methods have to be implemented. Here, we introduce the further extension
methods that are used in the implementation of NMF Transformations. This includes
only the where operator. The goal is to be possible to enhance the API such that a syntax
like in listing 3.17 is possible.

25

26 3. Foundations

1 IEnumerable<string> i tems1 ;
2 IEnumerable<string> i tems2 ;
3
4 var itemsCombined = from s1 in i tems1
5 from s2 in tems2
6 where s1 != s2
7 select s1 + s2 ;
8
9 foreach (var s in itemsCombined) {

10 Console . WriteLine (s) ;
11 }

Listing 3.17: Using the IEnumerable<T> monad with the LINQ query syntax, enhanced

The first and quite obvious extension method that is needed for this syntax is Where.
Listing 3.18 shows its signature.

1 public stat ic IEnumerable<T> Where<T>(this IEnumerable<T> items ,
Func<T, bool> f i l t e r) ;

Listing 3.18: The signature of the Where extension method

The semantics of the Where-method is that it should filter the monadic instance with the
given filter method. If there was only one from statement in listing 3.17, we would be done
here. However, there are two of them and thus, there is a further method needed for the
above syntax to not cause a compilation error. In listing 3.16, the second from-statement
calls SelectMany where the type placeholders T,U, V are set to string and the selection
method returns the concatenation. However, in listing 3.17 there is a filter in between
based on both string values. Thus, SelectMany is called with a compiler generated tuple
of strings as type parameter V . This tuple is then filtered by a Where implementation as
in listing 3.18. Thus, we need a further extension method to perform the final selection
that returns the concatenation. The signature is presented in listing 3.19.

1 public stat ic IEnumerable<U> Se l e c t<T,U>(this IEnumerable<T>
items , Func<T,U> s e l e c t o r) ;

Listing 3.19: The signature of the Select extension method

3.4. Quality Attributes of Model Transformations

In his PhD-thesis, Marc van Amstel describes a row of quality attributes for model trans-
formations [vA11] to reflect the internal quality of model transformations. These quality
attributes have been derived with respect of development and maintenance and are thus
suitable to make statements on the maintainability. The following sections will introduce
these quality attributes. For more detail, especially for the discussion why these quality
attributes have an impact on the maintainability, the reader is referred to [vA11].

3.4.1. Understandability

Understandability is a general code attribute and refers to the effort to understand what
the code actually does. Understandability itself has a high complexity as it depends on
a row of subsequent attributes like the background of the developers that are trying to
understand a given piece of code.

26

3.4. Quality Attributes of Model Transformations 27

For traditional software artifacts, understandability has been shown to make up the biggest
part of the effort involved in most maintenance tasks [CMT96, SWM97].

Tool support for the understandability of a model transformation includes visualizations
of its internal structure. An example how such tool support could look like for a model
transformation language is presented in [RNHR13] where a tool support for QVT is pre-
sented.

Understandability is a subjective criterion that can only be evaluated by using question-
naires.

3.4.2. Modifiability

”Modifiability refers to the amount of effort for adapting a model transformation to provide
different or additional functionality.” [vA11]. For traditional software artifacts, perfective
changes make up the biggest proportion of such adaption scenarios [LS81]. Of course,
modifiability is closely related to understandability as developers have to understand a
model transformation in order to change it.

In traditional software artifacts, a large proportion of modifiability consists of discover-
ability. That is, the developer can discover the features of a framework without referring
to the documentation and be able to use a framework guided only by the tool support.
This tool support consist of auto-completion and suggestions.

3.4.3. Reusability

Reusability in the context of model transformations is the extent in which parts of the
model transformation can be reused for other (related) model transformation. That is,
in order to be reusable, a model transformation language must provide means to com-
pose a model transformation of parts of other model transformations written in the same
language.

Reusability is an important attribute for the maintainability of a model transformation
as it helps to avoid duplication of code which yields maintenance problems as this code
eventually has to be changed.

3.4.4. Modularity

”Modularity is the extend in which a model transformation is systematically separated
and structured.” [vA11]. Modularity is particularly useful to quickly identify the change
impact of any changes occurring when evolving the model transformation. Furthermore,
a structure of well separated parts of a model transformation also means that these parts
can be developed separately.

3.4.5. Completeness

The completeness is the extend in which a model transformation fulfills its requirements.
Unlike the other quality attributes, completeness is also an external quality attribute as it
measures the conformance of the model transformation to the requirements. As such, the
completeness depends on these requirements.

27

28 3. Foundations

3.4.6. Consistency

”Consistency is the extend in which a model transformation is implemented in a uniform
manner. ” [vA11]. That is, a uniform programming style is used throughout the whole
model transformation.

Possible reasons for inconsistent model transformations include that multiple developers
may be working on a model transformation, but also that the transformation language
in use does not allow to fulfill all requirements in a convenient way. In the latter cases,
transformation developers may decide to change the programming style or even paradigm
to fulfill these more sophisticated requirements.

3.4.7. Conciseness

”Conciseness refers to the extend in which a model transformation is free of superflu-
ous elements.” [vA11]. Although Van Amstel mainly refers to unused parts of a model
transformation, conciseness also refers to the density in which the model transformation
is specified. For model transformation languages, this includes the avoidance of syntactic
noise, i.e. code that is only required for the parser but does not have a semantic.

28

4. Example Transformations

In this section, some examples for typical model transformations are introduced. These
sample transformations are used later to explain problems and approaches to solve them.
They are rather toy examples than model transformations from practice and the solutions
thus do not offer much insight to model transformation.

4.1. Finite State Machines to Petri Nets

Finite state machines have gained a high popularity in computer science. They can be
used to describe processes in an intuitive way. Finite state machines consist of multiple
(finitely many) states that can have transitions to each other that are triggered on a certain
input. There is exactly one start state and arbitrary many final states. Transitions have
exactly one origin state and one target state. If one considers a online purchasing process,
it starts when the customer navigates to the shopping portal. The customer then puts
items into the shopping cart and eventually navigates to the checkout. Thus, he enters
his personal details, the shipping address and the payment method and finally confirms
the purchase. This process can be described in a finite state machine where the steps to
complete the purchasing process are represented by the states of that finite state machine.
The transitions are triggered by the customer entering a URL to his browser. The states of
the finite state machine may form cycles like after inserting an item to the shopping cart,
the customer might insert another item. Also more complex cycle are possible. A customer
might proceed to the checkout, fill in the personal details, add items to the shopping cart
and cancels the purchase process afterward. This causes the finite state machine go back
to the state where the customer is inserting items to the shopping cart.

Figure 4.1 shows a metamodel of finite state machines.

Petri Nets are a different way to describe processes. Instead of states, Petri Nets consist
of places. Whereas finite state machines have the semantics that they are in one state at a
time, the semantic of Petri Nets is that tokens flow through the Petri Net. Furthermore, the
transitions in a Petri Net may have multiple origin and target places. They are triggered
if there is a token on each origin place. The then destroy these tokens and create new
tokens at each of the target places. In the example above, the requests in the shopping
system can be seen as tokens and the states of a request can be seen as places. Of course,
many customers might insert items to shopping carts in parallel.

Figure 4.2 shows a metamodel of Petri Nets.

29

30 4. Example Transformations

Figure 4.1.: A metamodel for finite state machines

Figure 4.2.: A Metamodel for Petri Nets

In the above example, a Petri Net allows several kinds of analysis on the data. Given the
response times of the software components represented by the places and a usage scenario
of customers, it is possible to identify the bottleneck component by extending the Petri
Net to a Queuing Petri Net [KB03]. Thus, possible performance problems can be unveiled
in early development stages.

The model transformation from models of finite states to models of Petri Nets can be
specified through the following requirements:

• For each state in the finite state machine, there should be a corresponding place in
the Petri Net.

• For each transition in the finite state machine, there should be a corresponding
transition in the Petri Net.

• For each start state in the finite state machine, there should be a transition without
an origin and and one target place set to the corresponding place of the start state.

30

4.2. People to Family Relations 31

• For each end state in the finite state machine, there should be a transition without a
target place and one origin place, which is the corresponding place of the end state.

In other words, the resulting Petri Net should have the same behavior as the finite state
machine with the exception that it is possible to describe how multiple requests go through
the system at the same time. Requests drop in from the transition corresponding to the
start state and flow through the Petri Net. This transformation is even valid if an invalid
finite state machine model with multiple start states is transformed.

This model transformation is a rather simple one. The main challenge is to establish a
correspondence between states and places.

4.2. People to Family Relations

Figure 4.3.: The People metamodel

Another example of a model transformation is a transformation between two different
metamodels expressing the same domain. In this example, there are two metamodels
depicted in the figures 4.3 and 4.4 that actually both express the same domain. This
domain describes several people and the relations between them. However, whereas the
People metamodel in figure 4.3 is rather simple, the FamilyRelations metamodel in figure
4.4 is more sophisticated.

Similar to the transformation in section 4.1, this transformation includes the task to map
person objects from the source model to corresponding person objects in the target model.
However, this transformation includes an inheritance hierarchy in the target metamodel,
although in the source metamodel, the equivalent concept is encoded in an enumeration.
Thus, males and females must be treated differently by the transformation. Furthermore,
the transformation includes some domain specific transformation knowledge, as the trans-
formation must know that for instance the sisters of a woman are the daughters of her
parents excluding herself.

31

32 4. Example Transformations

Figure 4.4.: The FamilyRelations metamodel

32

5. Supporting model transformation with
dedicated languages

Debating about model transformation languages, it is important to discuss how a model
transformation language should be implemented. Section 5.1 first discusses the specifics
of the domain of model transformation. Afterward, the sections 5.2 and 5.3 discuss to use
an external language or an internal language for model transformations. Finally, section
5.4 draws conclusions how to implement a maintainable model transformation language.

5.1. The domain of model transformation

Transforming models can be seen as a dedicated domain in the sense of model driven
engineering. As a result, some transformation languages like ATL encourage this way of
thinking, expressing a transformation as a model in this domain [BBG+06]. This way of
consideration of a model transformation has huge advantages when it comes to higher-order
transformations. Being models themselves, transformations can be analyzed or generated
using normal model transformations.

However, the domain of model transformation has some characteristics that makes it dif-
ferent to other domains. Sendall and Kozaczynski have stated several requirements in
[SK03a]. According to this paper, it is a central requirement for model transformation
languages that

”A transformation language must provide for complete automation and must
be expressive, unambiguous, and Turing complete”.

Complete automation means that a transformation language must provide a tool that en-
ables users to run the model transformation automatically. It is a desirable tool support to
integrate model transformations in the development workflow so that any transformations
run automatically whenever required (e.g. when the source model changes or when the
target artifact is needed). Expressiveness means that a transformation developer ought
to be equipped with language features to express the essence of the model transformation
without too much syntactic noise. Unambiguity means that a model transformation must
have a deterministic result, i.e. given the same input models, it should result in equivalent
target models. The Turing complexity relates to the complexity of the language. A Turing
complete language can describe an arbitrary Turing machine and thus all algorithms that
can be implemented by a Turing machine.

33

34 5. Supporting model transformation with dedicated languages

Whereas complete automation and unambiguity are common requirements for a domain
specific language, the Turing completeness is not. In fact, Kelly and Pohjonen listed it as
worst practice [KP09] for the underlying abstract syntax represented by the metamodel.
Fowler even goes one step further and generally calls Turing complete languages general
purpose languages, even though they might be dedicated for a specific domain like for
example R is dedicated for statistics [Fow10]. As reason that Fowler puts such a strong
emphasis on the limited expressiveness, it changes the characteristics of a DSL in compar-
ison with general purpose languages in the way how these languages are implemented and
used. While a general purpose language is used for many purposes, a DSL has its tiny
little purpose that is entirely solved by that DSL.

This requirement is also debatable. It is also a question of what exactly a model transfor-
mation is, especially how far a model transformation is able to transform the semantics of
a model. Indeed, it is easy to find a model transformation problem that only requires a
regular language to be solved but it is hard to find a good example to demonstrate that
MTLs should be Turing complete. When debating that model transformations indeed
should be Turing complete, the best argument is that especially in-place transformation
sometimes include model optimization tasks of arbitrary complexity. Furthermore, the
lambda calculus is shown to be Turing complete. However, in thesis, we tend to follow the
argumentation of Sendall and Kozaczynski that model transformation languages should
be Turing complete.

The problems arising when DSL are getting more and more expressive, they start copying
duplicating concepts. Since they have proven their usefulness, domain dedicated general
purpose languages often duplicate concepts that are already included in main stream gen-
eral purpose languages (which in turn Kelly and Pohjonen list as separate worst practice).
Assuming Turing complexity further yields some other problems like the undecidability
whether higher-order transformations terminate (an immediate consequence from the Halt-
ing problem). This leads to the question whether model transformation should be seen as
general purpose task, to be supported by general purpose languages.

Another factor that advocates calling model transformation languages general purpose
languages is the scope of these languages. Where DSLs are usually created to support a
very specific task, model transformation languages are used throughout the community of
that MTL instead of just inside a single or a few projects.

However, the work done so far in domain-specific languages yields a useful categorization
when talking about model transformation languages. Although they have different scope
and an increased complexity, the way of how to implement these languages either as
entirely new language like an external DSL or as framework providing a language-like
syntax remains essentially the same. In fact, there are examples of both kinds of general
purpose languages. Examples of external general purpose languages include the main
stream general purpose languages like Java or C# and many others like Ruby. However,
many consider Ruby on Rails a different language, though still general purpose, but clearly
Rails is the equivalent to an internal DSL in general purpose languages.

Furthermore, in contrast to most general purpose languages, MTLs have a focus on a
certain task, although this task cannot clearly be bounded. The task of a model trans-
formation language is like to transform anything into anything. However, there are quite
some assumptions that can be made for the environments where model transformation lan-
guages are going to be executed which is not true for languages like Java or C#. We can
assume that a model transformation task is part of a model-driven software development
process and mostly runs without interactions (although interactive model transformations
exist). There are also some common high-level abstractions for model transformation
implemented in most model transformation languages. These concepts include mapping

34

5.2. MTLs as External DSLs 35

concepts and tracing concepts. That is, most model transformation languages save the
information that particular model elements correspond to each other. The lack of such
abstractions in mainstream languages like C# or Java makes these languages infeasible
for model transformation tasks [SK03a].

Thus, model transformation languages have a position somewhere in between domain-
specific languages and usual general purpose languages, much like R is considered a general
purpose language by Martin Fowler but indeed has a though washy domain (to support
any statistics work). Where Fowler states there is a fuzzy borderline between domain-
specific languages and general purpose languages, languages like R or model transformation
languages are pretty clearly on that borderline.

This position being somewhere in between general purpose and domain-specific languages
yields an again different way of how such languages are used or implemented. Where gen-
eral purpose languages are implemented by a very small group of developers in comparison
to their users and on the other side domain-specific languages have a tiny amount of users,
model transformation languages are also in between. The proportion of users in relation
to the language developers is again somewhere between general purpose languages and
DSLs.

However, as the borderline between DSLs and general purpose languages is fuzzy enough,
the introduction of another intermediate kind of languages must cause an amount of con-
fusion that would likely overwhelm the benefit of that categorization. Thus, in this thesis
we continue to treat model transformation as a domain, although possibly one with an
intrinsic Turing complete complexity. As this complexity is intrinsic in the domain, we
will continue to call the languages dedicated to this domain domain specific languages, as
their Turing complexity is caused by their complex domain. However, it is still useful to
keep in mind that this categorization is not that clear and model transformation languages
can also easily be referred to as general purpose languages.

5.2. MTLs as External DSLs

External DSLs are domain specific languages that use an entirely new language. Thus,
language engineers that create an external DSL also have to create all the tool support.
This includes a parser and either an interpreter or a compiler at minimum. An interpreter
is a component that executes a model at runtime whereas a compiler uses some sort of
intermediary representation. In the context of model-driven engineering, the compiler is
usually referred to as code generator.

In general, external domain specific languages have the great advantage that there are no
restrictions on the language. Thus, in contrast to internal DSLs that are embedded in
a host language, they can provide a clear syntax avoiding unnecessary syntactical noise
like unnecessary punctuation. In practice, the only restriction usually is that the parser
generator has to be able to create a parser for the language but as most such systems work
with BNF or EBNF1 syntax, this is not a hard restriction.

Where general purpose languages lack of suitable high-level abstractions, external DSLs
can provide a simple syntax for these high-level abstractions. A transformation engine
can then execute the execution semantics of these high-level abstractions. The actual
abstraction level of these concepts may vary. As an example, QVT-O is still an imperative
language and thus the abstraction from the actual computational model is quite thin. In
contrast, the abstractions included in QVT-R are much higher hiding the computational

1(Extended) Backus-Naur-Form, a special syntax for grammars

35

36 5. Supporting model transformation with dedicated languages

model entirely from the transformation developer, which is why it is called a declarative
language.

However, as we are dealing with a complex domain, these external DSLs somehow have
to find ways to represent this complexity. The threat here is that these transformation
languages may duplicate the concepts known from general purpose languages which is
considered a worst practice [KP09]. As an example, QVT-O extends the OCL query
language with some imperative constructs like assignments and loops. The threat arising
from this practice is that the language becomes less useful as the language anneals to main
stream general purpose languages which usually have much better tool support. In turn,
the DSL gets less useful.

Even though such an external transformation language may be using the general purpose
language constructs and thereby reinventing the wheel, there is still another threat that the
transformation language is inventing it slightly different. As an example, an assignment
in QVT-O is written as := instead of = like in most C-based languages like Java or C#.
As a reason, QVT-O is extending the syntax of OCL which already uses the = operator
for equality (where C-based languages use the == operator). This difference in the syntax
might seem unimportant as the learning effort is the same for both syntax variants. In
fact, it is not because the C-like version is the version most developers are used to. As an
immediate consequence, developers developing in both QVT-O and a C-based language
like Java or C# can get confused about when to use which version of an assignment.
Especially developers developing mostly in that C-based language are likely to end up
trying to specify an assignment statement in QVT-O using the =-operator. As this is a
valid statement in QVT-O, the compiler does not throw an error and the developer starts
wondering why the transformation is not producing the expected output. The root of the
problem is hard to find, as there is only a colon missing. Such effects can be annoying
and thus both increase the maintenance costs and lower the acceptance of the model
transformation language among developers.

5.3. MTLs as Internal DSLs

Internal DSLs are domain specific languages that use the syntax of another language,
commonly referred to as host language. Most internal DSLs use dynamic or scripting
languages as their host language. The obvious benefit from this procedure and most often
the reason to use an internal DSL is that the tool support of the host language can be
used. Thus, neither a parser nor interpreter or compiler have to be built. All this can be
reused from the host language which makes an internal DSL much easier to implement.
An example is the trace analysis languages from Barringer and Havelund. Whereas the
language Ruler is implemented as an external language, the language TraceContract is
implemented as an internal DSL. Although TraceContract offers greater functionality and
easier adaptability, its implementation is close to a magnitude smaller in size [BH11].

In the example of Barringer and Havelund, the authors referred to their language as a
shallow internal DSL. This means that the DSL is actually exposing normal language
features. In the case of TraceContract, the pattern matching from Scala is used for the
trace analysis, also.

The approach of a shallow internal DSL exposing features of the host language can also
solve the dilemma mentioned at the beginning of this chapter. By including the features
of the host language, an internal DSL might make use of these features to express the
parts of the abstract syntax that are responsible for the Turing completeness. In most of
the cases where a language is Turing complete, there is only a part of the language that
makes the Turing completeness. Consider for example C# without any class members,

36

5.3. MTLs as Internal DSLs 37

statements or expressions. What remains is the namespace and class structure, even
including inheritance and generic classes. However, this remainder is not Turing complete.
The Turing completeness is introduced foremost by the expression syntax.

A DSL, whether internal or external, always needs a semantic model behind it [Fow10]
which is also referred to as the abstract syntax. Especially internal DSLs easily fall into the
trap of not creating a semantic model behind the scenes but perform operations directly.
In his book, Fowler calls this a command-query syntax which does not fulfill the definition
of a DSL, since a DSL always needs such a semantic model. Having said that, it is not
specified how this model could look like and what the metamodel is.

In case of an internal DSL for an object-oriented language, the metamodel consists of
classes and the model is mostly created by method calls and afterward represented by
instances of these classes. In C#, the references of these classes are represented by proper-
ties. However, unlike typical metamodels conforming to meta-metamodels such as Ecore,
the type of these properties is not restricted by either other metaclasses or primitive ob-
jects. They can be typed with arbitrary types. This includes types that wrap Turing
complete functionality, such as interfaces or functions2. As C# has the language feature
of delegates, properties can easily be typed with functions that may contain the Turing
complexity.

If, however, the host language has no language features like function types and lambda
expressions, this procedure can still be done by specifying the Turing complexity through
method polymorphism which is also available in languages like Java that do not support
functions as objects. In this way, the functions are specified through inheritance of certain
classes and overriding these methods. Both attribute specification through inheritance and
by simply setting attributes in the form of lambda expressions can be combined.

The traditional arguments against shallow internal DSLs are that such languages are the
lack of analyzability (due to the used Turing completeness of the general purpose host
language) and the lack of conciseness (which is an issue of all internal DSLs). Assuming
a the Turing complexity requirement, the analyzability argument can be invalidated as
the domain itself is Turing complete and thus lacks analyzability. However, as the Turing
complexity is hidden in some attributes, the semantic model indeed can be analyzed ig-
noring just these attributes. The latter lack of conciseness also has the consequence that
domain experts must understand the host language and are thus unable to read the DSL
in many cases. Hence, the DSL is losing one of its greatest benefits, at least according to
[Fow10]. However, also external DSLs do not necessarily need to be understandable by
domain experts, just because they are dedicated languages, especially as the domain is, in
contrast to usual domains in MDE, Turing complete.

However, internal also have drawbacks when compared with external DSLs. The require-
ment that the language must be embedded in the host language yields a worse conciseness.
How badly the conciseness is affected by the host language depends on both the host lan-
guage and the nature of the internal DSL. Usually, dynamic or functional programming
languages are better suited as host languages than for example Java or C# as they offer
a flexible syntax and thus allow for more concise embedded DSLs.

The lack of conciseness yields a threat of losing one of the most important properties
that a DSL can have: Its easy understandability by domain experts. Where users of an
internal DSL have to be familiar with the (mostly complex) syntax and abstractions from
the host language, users of an external DSL only have to know the syntax of that DSL.
However, model transformations describe an execution semantics that has an intrinsic
complexity and thus, it is questionable how external languages can manage to specify

2However, Ecore offers an extension point by assigning properties the type EJavaObject

37

38 5. Supporting model transformation with dedicated languages

model transformations in a concise manner. This is an open research question and will be
discussed later in this thesis.

But it is not only the conciseness. Internal DSLs cannot control the parsing process and
thus, developer may create statements that are invalid in terms of the intended language.
As for example, if the internal DSL is using method calls to build up its semantic model,
these method calls might be encapsulated in a conditional statement where the condition
e.g. relies on some configuration parameters. As it is in general impossible to evaluate
these conditions at compile time, such cases make static code analysis of the internal DSL
hard. As a consequence, maintainability measures such as metrics are hard to compute,
as it is difficult to derive the semantic model at compile time. At least, it can be detected
that static code analysis can parse the semantic model by means of static code analysis.
For example, if the method calls to make up the semantic model are not encapsulated in
conditional statements or loops, static code analysis can conclude that these method calls
are made exactly once. As we can assume that the static code analysis knows the effects
of such method calls to the semantic model, the semantic model can be parsed statically.

5.4. Conclusions

Model transformation can be seen as a domain in the sense of model-driven engineering.
However, model transformations need to be Turing complete, thus making the domain
Turing complete. Thus, also the language to support model transformations must be Tur-
ing complete and hence, the definition for domain-specific languages from Fowler [Fow10]
must be extended for this purpose to allow Turing complete languages. Although exter-
nal DSLs can offer a syntax easier to read and thus understandable by domain experts,
they are likely to reinvent mechanisms already known from general purpose languages
in a slightly different way. This yields maintenance problems as developers face several
different versions of the same concept.

Internal DSLs can utilize their general purpose host language and use it to express the
Turing complete parts of a semantic model. In this way, the language features of the host
language can be reused to specify the Turing complexity involved in the model transfor-
mations. With its domain focus, the internal DSL remains to specify the structure of the
semantic model. This can be easily accomplished as the remainder is not Turing complete.

38

6. Model Transformation Problems

Besides other aspects like its purpose, the usability of a transformation language depends
on the background and the preferences of its users [SK03a]. However, there are few dedi-
cated transformation developers as most developers still develop in general purpose code.
Thus, in order to provide better support for model transformation developers, it is crucial
to understand where the problems of model transformations are when dealing with them
using these general purpose languages. These problems then lead to functionality that is
to be supported by MTLs.

The following sections introduce some issues that arise when performing typical transfor-
mation tasks. This list does not claim completeness. Instead, it is based on observations
on a row of small and middle-sized model transformation projects. It is also discussed how
the standardized languages QVT-O and QVT-R use language features to overcome these
issues. In these sections, the general assumption is that code is generated for all input and
output metamodels of a model transformation and thus model elements can easily be rep-
resented by objects of classes representing the metaclasses of the metamodel. We further
assume that it is possible to modify the code generation process to allow improvements for
developing model transformations e.g. by extending these classes with some code required
by any pattern.

6.1. Correspondence & tracing

6.1.1. Problem description

Elements in the target model of a model transformation usually do not depend on all of
the input model elements. In this way, the target model elements depend on the model
elements of the input models that influence them. In some cases, this dependence may
form a more or less obvious correspondence. The easiest example is a copy transformation
where each of the target model elements corresponds to its original model element. The
original model element and the corresponding element form a relation which is why some
MTLs including QVT Relations name their top level language constructs relation.

Transformation developers usually need to query these relations that are somehow defined
in the transformation. The support for this type of queries is generally recognized as
trace. In many MTLs including QVT-O this trace is explicitly used to get a corresponding
element for a given input model element.

39

40 6. Model Transformation Problems

6.1.2. Solutions in general purpose code

To save trace links, usually hashtables are used. The usage of the hashtable also yields the
advantage that the hashtable can also serve as tracking mechanism to see which elements
have been transformed. However, hashtables usually do not allow more complex queries.
Furthermore, this procedure requires some kind of bookkeeping from the developers, which
eventually becomes confusing.

As these correspondence links have to be set up manually, there are only set up where
they are required. However, as requirements change, setting this correspondence might be
necessary for other objects as well. This yields a drawback of creating the correspondence
link for just some of the elements as the change impact of extending the transformation
can be large.

6.1.3. Solutions in QVT-O and QVT-R

Being an entirely declarative language, QVT-R does not have an explicit support for trac-
ing as in this section. Instead, these problems are hidden by the transformation language.
The tracing functionality is hidden in the complex pattern matching in QVT-R where
QVT-R can declare a constraint that two objects have a correspondence according to
another relation.

On the other side, QVT-O has a powerful and explicit trace support with the resolve

keyword. This trace support is even bidirectional with invresolve. Several modifications
like resolveIn or resolveOne exist to support different type of tracing queries.

6.2. Cyclic object models

6.2.1. Problem description

Considered as an object graph, many models contain cycles. However, where trees and
acyclic graphs have gained a good popularity in computer science, cyclic graphs have not.
This might be because as soon as a graph is cyclic, one cannot traverse it without tracking
which parts of the graph already have been traversed in order to prevent an endless loop.
In general purpose code, this is typically done using lists of the items already visited.

As the metamodels of input models can be very complex, it might contain a lot of cy-
cles. Each of these cycles might cause an endless loop, unless handled with a tracking
mechanism. Thus, the transformation developer ends up with an amount of these tracking
mechanisms.

Furthermore, inheritance involved in a complex metamodel can cause that developers are
hardly aware of these cycles. This yields the risk that a cycle is forgotten and causes an
endless loop. It also causes the risk that a newly introduced tracking mechanism remains
undocumented and another developer that is asked to maintain the code does not see its
necessity.

6.2.2. Solutions in general purpose code

To prevent cycles, transformation developers using general purpose languages usually end
up using lists of elements already visited. However, if also a tracing mechanism is used,
this also can be utilized to prevent endless loops.

6.2.3. Solutions in QVT-O and QVT-R

Much like the tracing support from the last section, the transformation engine is responsible
to call each QVT-R transformation relation once at most.

However, QVT-O does not have a dedicated support to call each mapping only once.

40

6.3. Inheritance 41

6.3. Inheritance

6.3.1. Problem description

Most metamodeling frameworks like for example EMF [MEG+03] allow inheritance. In-
heritance relations are used to established an ”is-a” relation between elements, in MDE
between metaclasses. As a result, instances of the super class are substitutable by instances
of the subclass. Often, the subclasses form different ways to fulfill the tasks assigned to
the superclass. Thus, to transform the elements of the superclass, it is necessary to know
the true subclass of this element.

The most obvious solution to check the elements for their type is considered to violate
good object oriented design as it involves explicit type checks that yield a maintenance
problem. The proposed way to solve this problem with a good OO design is to utilize
method polymorphism, i.e. the derived classes of some base class override certain methods.
However, this usually requires the availability of methods to be overridden which means
that the model explicitly supports a certain model transformation task. In many scenarios,
this is not even possible as the code for the models is not accessible.

However, even if the code is accessible, a transformation only describes a single aspect
and thus, the code for the classes in a metamodel should not contain code for a specific
transformation. As we assumed the code representing the metamodel to be generated, we
cannot assume this code to contain virtual methods and implementations to support a
certain transformation task.

6.3.2. Solutions in general purpose code

In object oriented design, the visitor pattern [ERRJ95] has been introduced to overcome
this issue. Metamodels rather seldom change and thus, it is a promising approach to
build a visitor pattern for each of the inheritance hierarchies appearing in the metamodel.
With these visitor patterns, a subtask of a model transformation can be implemented as a
visitor, thus avoiding type checks. To be used for model transformation, the visit method
only has to be changed to return an instance of a generic type T.

In order to use a visitor pattern, the model code has to support it. As we assumed that
the code generation process for the metamodels can be modified, it is possible to generate
code to implement a visitor pattern on the models. Even in case that the model code
is not accessible, Palsberg and Jay already already showed that the accept-method of a
visitor pattern can be omitted when reflection is available [PJ98].

However, in contrast to many general purpose languages like Java or C#, most meta-
modeling frameworks even allow multiple inheritance. As a consequence, a metaclass may
not be part of a single inheritance hierarchy, only. Instead, there might be many of these
hierarchies. Furthermore, it is unclear which inheritance levels are important for a spe-
cific transformation task. The approach to generate the visitor pattern for all metaclasses
that are leafs in the inheritance hierarchy might lead to a manageable amount of different
visitor patterns, but the implementation of the visitors might suffer as many of the visit
methods point to the same code. Thus, generating visitor patterns for each and every
occurrence of inheritance hierarchies is not feasible.

The approach suggested by Palsberg and Jay is more flexible as no accept methods of
visitor patterns have to be implemented in the model code. Instead, the metaclasses
involved to fulfill a certain transformation task can be selected per task. However, the
measurements in the article show that it is also very slow, mainly of the poor performance of
invoking a method through reflection. For model transformations executed at development
time, as most of model transformations are, maintenance usually is more important than

41

42 6. Model Transformation Problems

performance. This is because model transformations can be executed as preprocessing in
a nightly build.

6.3.3. Solutions in QVT-O and QVT-R

Again, QVT-R solves this problem with a complex pattern matching by specifying which
elements should be transformed. By describing a procedure how to create copy transforma-
tions using QVT-R, [GW08] shows how to use the pattern matching to support inheritance
problems. However, solving this issue with patterns requires a very special paradigm that
many developers do not familiarize with.

QVT-O has a dedicated support for such inheritance related issues. These can be handled
by disjunct mappings. With these disjunct mappings, it is further possible to use guards
which makes the approach more flexible than just supporting inheritance issues. However,
a disjunct mapping must not contain any statements. Thus, to avoid duplicate code,
statements common to a super class must be created separately in an abstract mapping.
Thus, the inheritance must be denoted at two different places: In the disjunction of the
disjunct mapping and in the mapping itself extending the abstract mapping.

6.4. Patterns

6.4.1. Problem description

Model transformations often face problems that require to transform an element out of
tuples of other elements. An example can be where a model element can represent a
context of another element. As the context may serve for multiple other elements and the
original element is not aware of any context, the transformation has to match these model
elements, for example using a more complex pattern matching.

6.4.2. Solutions in general purpose code

In general purpose code, complex pattern matching based on tuples of elements is not
directly supported. Instead, the developer must create these tuples and filter them on his
own.

6.4.3. Solutions in QVT-O and QVT-R

QVT-R has a great intrinsic support for specifying complex patterns as transformations
are specified only through patterns.

In QVT-O, a mapping can have multiple input elements. However, beginning from the
second argument, the latter arguments serve as parameters. Implementations of QVT-O
do not create tuples to match these parameters automatically.

6.5. Optimization Tasks

6.5.1. Problem description

Some transformations, especially often in-place transformations, require to optimize the
model in terms of domain specific optimization criteria such as cost heuristics. The trans-
formation has to output not just any valid result but the result that best suits these
optimization criteria, e.g. has the lowest cost.

Such optimization tasks can include some sort of backtracking mechanism but do not
have to. Sometimes, it is possible to solve the optimization task entirely by means of

42

6.5. Optimization Tasks 43

heuristics. However, retrieving an applicable heuristics and method to be sure that certain
requirements are met is often very time-consuming. Depending on the size of the models
and how often the resulting transformation is executed (and thus how valuable development
effort is in comparison to the execution times), it can be much cheaper to simply run a
brute-force algorithm instead of providing special algorithms to solve the transformation
task in a deterministic manner.

However, optimizations are not limited to model transformations. Rather, optimizations
can be a part of multiple processes, including business logic processes. As optimization
problems usually are NP-hard, most optimizations tasks are solved by general purpose
code. As a reason, general purpose languages provide the flexibility to use case-specific
polynomial time approximations.

The idea of optimization tasks within model transformations can be extended to the idea
to split the properties of a model element. Some properties are specified using a DSL and
others are automatically inferred by an optimization process in order to minimize some
cost function like the response times of the resulting software system.

In contrast to optimizations that are part of a daily business, optimizations running on
models to set certain parameters run relatively seldom, operating on rather small problem
sizes. However, such model optimizations may be changed rather often as new models may
require entirely new optimization tasks. As a consequence, the performance of how these
optimizations tasks are executed gets less important meanwhile the effort of specifying and
maintaining such a model optimization becomes critical.

6.5.2. Solutions in general purpose code

Developers in general purpose code have to implement optimization tasks by manually
implementing a suitable algorithm. Usually, developers attribute to some common opti-
mization problem like bin-packing or the traveling salesman problem and use the known
approximation algorithms to solve their optimization in a reasonable execution time. How-
ever, the process of finding an appropriate well known optimization problem and fitting it
to the actual optimization task is both time-consuming and complicated.

If no suitable known optimization problem can be found, developers have to implement
an own algorithm. The easiest algorithm to implement is usually a brute force algorithm.
The downside of this approach is that the execution time of such brute force algorithm is
deterministic exponential whereas for many known optimization problems, approximations
exist that achieve a low polynomial time complexity.

For such situations, frameworks like NMF Optimizations [Hin13] exist that allow a
concise specification of optimizations that can then be solved by brute force algorithms.

6.5.3. Solutions in QVT-O and QVT-R

Neither QVT-O nor QVT-R include support for non-deterministic optimization. However,
QVT-O offers functionality to clone objects, which might be helpful when performing
such optimization tasks. Furthermore, if there was a framework that supported these
tasks, transformation developers would have difficulties to integrate this framework into
the transformation. In QVT-R, this is impossible. Some QVT-O implementations offer
ways to access black box functionality that can be implemented in a general purpose
language like Java.

More general, if a model transformation task includes an optimization task but the (exter-
nal) model transformation language does not support optimization tasks, specifying such
a transformation gets very complicated. As external MTLs like QVT-O and QVT-R have

43

44 6. Model Transformation Problems

a limited set of features that are dedicated for their domain, applying them in scenarios
that are not foreseen by the language developers yields a huge maintenance problem. Un-
like general purpose language features, language features of an external domain-specific
language ought to have a domain-specific semantic. Assuming that MTLs are Turing com-
plete (see chapter 5), this argument is attenuated. For example, QVT-O also reintroduces
language features of normal general purpose languages. The threat for the transforma-
tion developer is to try expressing the optimization problem with the abstractions for
model transformations like mappings. This creates a set of workarounds that are harmful
for the maintenance of the transformation as it is unclear which mappings belong to the
transformation and which of them are just used as workarounds.

The usual solution is to use extension points of the language to e.g. implement rules in
a mainstream general purpose language like Java or C#. An external MTL can reference
this general purpose code, while an internal DSL can provide means to inline this code
into the model transformation. However, as the transformation is then implemented in
multiple programming paradigms, this hampers the solution consistency.

6.6. Higher-Order Transformations

6.6.1. Problem description

Higher-order transformations are transformations that either accept other model trans-
formations as input for the transformation or produce a model transformation as output,
much like higher-order functions in functional programming. Higher-order transformations
proofed their usefulness in many cases [TJF+09].

6.6.2. Solutions in general purpose code

Source code of a general purpose language can also be seen as textual representation of a
model. Approaches that represent this are available for several popular general purpose
languages. For Java, there is JaMoPP [HJSW09] whereas the metamodel of such a code
representation in .NET is part of the Base Class Library (with the class structure of .NET
used as the meta-metamodel) which is in turn part of the .NET framework. These classes
for this representation are in the namespace System.CodeDOM and provide a language-
independent code model. However, Microsoft is currently working on Roslyn1, which
includes a more fine grained source code model.

Most of these models can also be used to generate code, thus making a higher-order-
transformation that outputs a model transformation similar to an ordinary M2M-trans-
formation task. However, as usual general purpose code lack of suitable high-level abstrac-
tions, such model transformations tend to be very complicated and verbose. As a reason,
they do not only have to transform the semantics of the input model, but also have to
unroll the transformation abstractions to general purpose code.

Analyzing a transformation written in general purpose code is very hard as the structure
of the transformation is dependent of the transformations architecture. This could be
anything depending on the personal flavor of the developer that created the transformation.
Analyzing the code to derive the structure also suffers from the halting problem, i.e.
the question whether such an analysis does even terminate for each and every model
transformation is undecidable.

1http://msdn.microsoft.com/en-us/vstudio/roslyn.aspx

44

http://msdn.microsoft.com/en-us/vstudio/roslyn.aspx

6.7. Transformation Composition 45

6.6.3. Solutions in QVT-O and QVT-R

The OMG has only standardized how transformations work and the features of the lan-
guages QVT-O and QVT-R. It is not specified what transformations in that languages
are [BBG+06]. Other MTLs that are not standardized but support higher-order transfor-
mations include ATL. In ATL, a model transformation itself is a model and thus can be
generated as an output of another transformation or analyzed. In theory, this procedure
is also possible for QVT-O and QVT-R but there is no such implementation yet, besides
generating the model transformation code with e.g. a M2T-transformation.

In theory, the argument with the analyzability holds for the analysis of every model trans-
formation language. However, model transformation languages ought to have an abstract
syntax (same as every domain-specific language [Fow10]). A higher-order transformation
that reads another model transformation can restrict on a non Turing complete part of
this abstract syntax and thus is analyzable.

6.7. Transformation Composition

6.7.1. Problem description

Modularity is a key factor for reusability and adaptability in software development and
thus, the need for composition mechanisms has already been denoted in [SK03a]. The
composition of model transformations is usually divided in internal and external trans-
formation composition [Kle06]. Internal transformation composition means that a model
transformation is composed of multiple transformations of the same language whereas
external composition allows to compose multiple model transformations of different lan-
guages. Thus, where internal transformation composition must be supported by the trans-
formation language, external transformation composition is about interoperability between
multiple transformations possibly of different paradigms. Hence, despite its importance,
external transformation composition is out of the scope of this chapter.

Internal model transformation composition can further be divided to transformation chain-
ing and transformation composition. Transformation chaining means that multiple trans-
formations that may be written in entirely different languages are executed one after
another. Thus, model transformations must be able to call other model transformations
as part of them. Transformation composition means that a model transformation is cre-
ated from parts of another transformation or many of them. This is usually achieved by
reusing parts of the transformation such as transformation rules.

6.7.2. Solutions in general purpose code

Most general purpose languages evolved over far more time and with much more intensive
research among them than any domain-specific languages will ever be, also including model
transformation languages. As modularity and thus reusability have always been important
in software development, the usual mainstream general purpose languages including Java
and C# provide great support for modularity. Thus, transformation chaining is easy to
accomplish as the transformation is mostly represented by methods that can easily be
chained.

The extension of an existing transformation is more difficult. The usual way to extend
an existing implementation in object-oriented design is to use polymorphism or program
against interfaces instead of concrete classes (or a combination of both). This yields the
trap that only code can be replaced or extended that is separated in virtual methods or
hidden behind an interface. Whereas methods in Java are virtual by default, in other
languages like C# they are not. Furthermore, it is not possible to change the behavior of
parts of a method. As a consequence, a model transformation in general purpose code can
only be extended where the developer set dedicated extension points.

45

46 6. Model Transformation Problems

6.7.3. Solutions in QVT-O and QVT-R

The support of QVT-O for transformation composition has been presented in section 3.2.1.
The specification of QVT-R does not include methods for transformation composition.

6.8. Testing

6.8.1. Problem description

Humans and thus transformation developers make mistakes. In general, the earlier such
a mistake is detected, the better and cheaper it is to repair this unintended behavior.
For this purpose, whenever developers can make mistakes, testing is required to hopefully
reduce the amount of mistakes that make their way all through the development process.
Using automated testing, tests are written that mostly test small portions of a software
development artifact and verify that it is producing the expected result. These tests can
automatically be executed causing an alarm bell to ring as soon as a code change makes
these tests fail. The ability of good testing to early detect bugs makes testability a strong
part of the overall maintainability of a software artifact.

As a consequence, software-development processes like test-driven development (TDD)
have gained popularity in recent years. In TDD, the tests are written before the imple-
mentation to ensure that the code is properly tested and the tests do not depend on the
implementation.

6.8.2. Solutions in general purpose code

For most modern main stream general purpose languages, there are testing frameworks
available, often more than just one. The most prominent testing frameworks are JUnit2

for Java and NUnit3 or MSTest4 for .NET. These test frameworks usually allow to specify
unit tests that can set up a test environment, perform some operations under test and
check the results, usually by using assertions on the result to compare the actual result
with the expected result.

Setting up the testing environment in this task involves creating stubs or mocks for all
components that the component under test needs in order to separate the component
under test as much as possible from the rest of the software system to allow for isolated
testing conditions.

In industry, the development teams in large companies like for example Microsoft consist
of as many dedicated testers as developers. This may show the importance of testing in
software development projects.

These automated tests are often included in the build process, such that a build automat-
ically triggers the execution of tests, thus automatically causing those alarm bells to ring
in case that tests have failed.

Furthermore, some tools like Pex5 [TDH08] allow automated white-box testing and thus
automatically create test cases for a given code.

2http://junit.org/
3http://www.nunit.org/
4http://msdn.microsoft.com/en-us/library/ms182469.aspx
5http://research.microsoft.com/en-us/projects/pex/

46

http://junit.org/
http://www.nunit.org/
http://msdn.microsoft.com/en-us/library/ms182469.aspx
http://research.microsoft.com/en-us/projects/pex/

6.9. Conclusions 47

6.8.3. Solutions in QVT-O and QVT-R

Both QVT-R and QVT-O do not have dedicated support for testing model transformations
included. Thus, it is only possible to test the complete model transformation as a black box.
However, conducting tests like this also needs a proper foundation for model comparison.
As a reason, the specification of a model transformation may not define the order in which
certain model elements need to be generated. As a consequence, the expected model and
the resulting model cannot just be compared for whether they match exactly (which in
turn is also difficult as equal models do not necessarily have the same serialization).

However, recent publications proposed a testing framework for QVT-O that is entirely
implemented as QVT-O transformation where tests for QVT-O transformations are also
specified as QVT-O transformation [CFM10]. This has the advantage that transformation
developers do not need extra tool support as the IDE supporting the development of the
transformation automatically also supports testing these transformations.

Other approaches like [FSB04, WKC08, SBM08, HLG13, WS13] aim to automatically
generate test models to support testing the transformations. However, as soon as a trans-
formation language is Turing complete, this cannot be achieved in general as an immediate
consequence of the Halting problem. Furthermore, most testing of model transformations
is still done by using black-box-testing, i.e. the whole transformation is tested as it instead
of testing parts of the transformation separately.

6.9. Conclusions

Writing model transformations in a mainstream general purpose language like Java or
C# is not a maintainable option as such languages lack suitable high-level abstractions to
support developers specifying their transformation. The lack of these abstractions yields
several problems that need to be dealt with. All of them can be handled by general purpose
languages. However, these solutions are not always maintainable solutions.

These problems that are hard to solve with general purpose code include the following:

• Model transformations establish a correspondence between elements of the target
model and the source elements that they are representing, which often needs to be
queried.

• Seen as a graph, models may contain cycles and thus developers must developers
must prevent endless loops in the model transformation.

• Models often contain inheritance hierarchies so that developers need ways to trans-
form polymorph instances. Dynamic programming can solve this problem but only
at the cost of losing the type safety and thus the IDE support.

• Model transformations may contain complex pattern matching.

• Especially in-place transformations may need optimizations as part of the transfor-
mation.

• Higher-order transformations need to read or write such model transformation lan-
guages.

However, model transformation languages must preserve some quality critical properties of
general purpose code. First of all, model transformation languages must provide means for
testing parts of a transformation rule separately. Furthermore, transformation languages
must provide means to compose a model transformation of other model transformations.
Solutions for QVT-O are available for these issues. For QVT-R, however, such support

47

48 6. Model Transformation Problems

does not exist yet. This may be caused by the fact that the computational model of QVT-
O is very similar to the one used in Java and thus for example testing can be supported
in quite a similar way.

Furthermore, specifying optimizations with current model transformation languages is
supported by neither QVT-O nor QVT-R directly. Instead, transformation developers have
to embed such optimizations in the transformation language which is hard to accomplish
and yields inconsistent solutions.

48

7. NMF Transformations

This chapter presents NMF Transformations, an open-source framework to support
model transformations to address the problems featured in sections 6.2 and 6.3. NMF
Transformations consists of the framework NMF Transformations Core and the
internal DSL NMF Transformations Language (NTL) built on top of it. NMF
Transformations Core provides a metamodel for model transformations while NTL pro-
vides an internal DSL designed to use NMF Transformations within C# more easily.
NTL further provides extensions to NMF Transformations to solve the problem of
complex patterns, see section 6.4. Neither NMF Transformations nor NTL provide
support for optimization tasks as in discussed in section 6.5. For this purpose, NMF offers
NMF Optimizations which is described in [Hin13]. The problem of higher-order trans-
formations is also not covered besides the general remarks on higher-order transformations
made in section 6.6.

Although it is compliant to the Common Language Specification (CLS) and thus it is
possible to use NTL in any .NET language, it is specifically designed for a usage in C#.
Thus, the master thesis concentrates on the C# syntax. NTL allows to specify transfor-
mation models that conform to the abstract syntax of NMF Transformations Core.
The metamodel for these models is Turing complete, although the Turing complexity is
encapsulated in functions that are used as attributes of the transformation models. The
structure of the metamodel itself is not Turing complete. However, the Turing complex-
ity is intended as a consequence of the discussion from chapter 5. NTL tries to provide
support that is as familiar as possible to C# developers. This is achieved by following the
design guidelines of the .NET framework documented by Cwalina and Abrams [CA08] and
letting transformation developers specify the population part of model elements in usual
methods with access to a trace functionality.

Being part of NMF, NMF Transformations is a framework to create rule-based trans-
formations using any .NET languages. NMF Transformations expects the input argu-
ments as plain CLR objects. It cannot read models from files. However, to interoperate
with e.g. EMF, NMF does contain a library and a code generator that is able to generate
classes for the metaclasses contained in a Ecore metamodel (see section A.3). The code
generator uses the System.CodeDOM namespace and thus, it is possible to generate this
code in multiple languages. Further, the code generator uses attributes to allow other li-
braries to serialize and deserialize these models into an XMI format compatible with EMF
(see section A.4).

49

50 7. NMF Transformations

First, section 7.1 introduces the abstract syntax of the transformation models. Next,
section 7.2 explains the architecture of NMF Transformations and thus explains how
the abstract concepts of NMF Transformations get an execution semantic. This is
followed by section 7.3 that introduces the stage model before section 7.4 shows how
to specify model transformations using NTL. In section 7.5, the drawbacks of NMF
Transformations are explained to show what has not been achieved with this approach
yet. Finally, section 7.6 concludes this chapter, summarizing NMF Transformations.

7.1. Abstract syntax

As discussed in [Fow10] and in section 5.3, an internal DSL like NMF Transforma-
tions needs a semantic model, an abstract syntax. However, the abstract syntax behind
NMF Transformations is not always directly represented in code and especially we ab-
stract from the decision whether a certain element is a class or an interface here for better
clarity and will instead use simplifications. The changes from this simplified abstractions
to the implementation model will be described later in this section.

Figure 7.1.: The conceptual abstract syntax of NMF Transformations

The conceptual abstract syntax behind NMF Transformations is presented in a class
diagram in figure 7.1. A transformation in NMF Transformations simply consists of
transformation rules and patterns. Patterns can be tied to a transformation rule and thus
have that transformation rule assigned to them.

Transformation rules may have dependencies and can instantiate other transformation
rules. Transformation rule instantiation is a concept to support the transformation of
inheritance hierarchies in either input or output models. Basically, a transformation rule
can be marked instantiating for another transformation rule and thus create the output
for this other transformation rule. To other transformation rules, this procedure is trans-
parent, e.g. the correspondence created by calling the instantiated transformation rule is
still available to the trace. These instantiation links can further be annotated with filter
expressions to restrict the inputs where a transformation rule can instantiate this other
transformation rule. By default, the computations are only filtered by the runtime type
of the input arguments and simply use the first transformation rule that matches.

Transformation rules specify how their output is to be created, in case they are not instan-
tiated, and how the inputs should be transformed to the output element. This is specified
through the attributes CreateOutput and Transform, which are typed as functions. These
functions make up the biggest part of the transformation where most the actual work can
be done.

50

7.1. Abstract syntax 51

Transformation rules can further set a delay level, both for creating their output and for
transformation. This output is used to inform the transformation engine that a transfor-
mation rule needs to generate its output in a second, third, or even later transformation
pass, e.g. in order to have increased trace capabilities. More details to this technique will
be presented in the section on the transformation stage model, section 7.3.

Dependencies are links between transformation rules. This enables the transformation
engine to know which other transformation rules to call, together with the inputs for these
transformation rules. They can either be single dependencies (causing to call another
transformation rule once per handled input) or a multiple dependency (causing multiple
other calls). Dependencies in general have a transformation rule that they depend on.
They may further filter the computations that trigger them, may specify a selector that
selects the input of the dependent transformation rule and a persistor that persists the
output of the dependent transformation rules together with the output of their parent
transformation rule. Once again, these attributes are typed as functions, following the
discussion from chapter 5.

Furthermore, a transformation may specify patterns. These form an extension point where
the metamodel can be extended. Such extensions are easy to implement, as the metaclasses
of an internal DSL are usually mapped to classes. These patterns may rely on a certain
transformation rule. Instead of referencing e.g. a C# class to specify the implementation
of the extension, extensions are meant to be made by extending model by these pattern
implementations.

As one can easily see, the model itself is not very complex, with only seven metaclasses
in total. Instead, the complexity is hidden in the attributes which are typed as functions.
The inner structure of these functions is not modeled in the abstract syntax of NMF
Transformations. Instead, the execution semantic of .NET is reused for this, same
as the syntax, because developers are used to it. Following Fowler 5, the transformation
model can be considered an adaptive model that represents an alternative computational
model and incorporates imperative C# code to specify how to for example select the inputs
for a dependent transformation rule. However, the greatest incorporation is the Trans-

form method that incorporates a whole method, thereby most often specifying the main
parts of the transformation. By some sense, NMF Transformations can be consid-
ered a language to specify when to call which Transform method with which parameters.
Thus, the incorporated imperative language is not only an extension point to express what
could otherwise not be modeled with the abstract syntax, instead the functionality rep-
resented by incorporated imperative language represent core parts of the transformation
model. All that NMF Transformations adds to the C# language that gives NMF
Transformations a flavor of a language is how transformations are specified in code.

The diagram in figure 7.1 also lacks of type safety, which is important since many of the
.NET languages and especially C# are type safe (although extensions for dynamic lan-
guages exist in C#). Furthermore, the type safety has the huge advantage that it enables
rich tool support of the IDE. Thus, NMF Transformations tries to save as much as
possible of the type safety of C#. This is the main reason that the metaclass Transfor-

mationRule is actually divided into a plethora of classes in the implementation. These
derived classes provide type-safe support. However, in some cases it is not possible to catch
all type mistakes during compiler time. As an example, the consistency of transformation
rule instantiations regarding the types of the input and output types of these rules can
only be checked at runtime rather than at compile time.

The implementation model of NMF Transformations further includes some other
classes that were not represented yet. Many of them remain hidden to transformation
developers and are for internal use only. They are made public entirely for extension

51

52 7. NMF Transformations

purposes of the NMF Transformations framework itself and are thus moved into a
separate namespace, following the guideline from [CA08].

An important exception to that rule are the classes related to the transformation context.
First of all, there is the transformation context. NMF Transformations is actually
aware that model transformations do not need to run only sequentially. At least, multiple
model transformations may run with the same model transformation, but on different in-
puts, achieving simple task parallelism. NMF Transformations supports this use case
by introducing a transformation context. This transformation context contains all infor-
mation that is used for a specific pass of the model transformation. The transformation
itself is stateless (except for caching that is not yet implemented). Thus, a model transfor-
mation can run with different inputs in parallel, sharing the transformation initialization.
This procedure has also advantages in a sequential world, as multiple transformations can
run one after another without exposing the transformation initialization (and only dispose
the transformation context).

Representing the state, the transformation context is responsible for the most important
functionality in the transformation, such as calling a transformation rule with a specific
input and the trace functionality. To enhance reusability, the trace functionality is moved
into a separate component and hidden behind a separate interface, same as the transfor-
mation context.

Another important concept of the implementation model that has not been presented yet
is the computation. Computations represent that a transformation rule has been called
within a transformation context for a given input. As transformation rules may only be
called once per context and input parameters, they are unique for these parameters. But
the computation object also holds the state of such a call, most importantly, the output.
However, as creating the output may be delayed, the output is not always accessible.
Computations also provide events to inform clients that either the output is created or the
main computation, i.e. the Transform method, has been called.

Furthermore, the metaclass TransformationRule is renamed to GeneralTransforma-

tionRule in the implementation model. This practice is following the naming guidelines
of [CA08] to reserve the best names for the classes that will be used most frequently.

As a consequence, the same diagram with the concepts represented by the abstract syntax
of NMF Transformations in the implementation looks a bit different. As patterns
are marked abstract, they are turned into interfaces for the implementation to avoid any
influence to inheritance hierarchies. Furthermore, there is an additional extension point
introduced as an interface for the dependencies. This allows developers to extend the
transformation rules with own dependencies which actually serve as hooks to own code.
The functions CreateOutput and Transform have been moved to the computation class
to allow developers extend the computation class of their needs with additional properties
shared by these functions and let these methods depend on them. If this is not required,
as in most cases, these methods can be specified together with the transformation rule in
a TransformationRule. However, the class TransformationRule is not shown in figure
7.2 for better clarity.

Figure 7.2 shows a class diagram containing a fragment of this implementation model with
the dependencies corresponding to the diagram in figure 7.1, except for the patterns. The
classes Action, Predicate and Func are delegate types and represent functions and can
contain arbitrary C# code (as well as any code in other .NET language).

52

7.2. Architecture of NMF Transformations Core 53

Figure 7.2.: The abstract syntax of NMF Transformations (fragment)

7.2. Architecture of NMF Transformations Core

From the large, NMF Transformations is divided into the framework NMF Trans-
formations Core and the internal DSL NTL built on top of the framework. The frame-
work and the internal DSL are well separated into two different namespaces. While the
classes that make up NMF Transformations Core reside in the namespace NMF.Trans-
formations.Core, the classes of NTL reside in the namespace NMF.Transformations. Fur-
thermore, the implementations of NMF Transformations Core and NTL reside in
different assemblies. The hierarchy of the namespaces already offers a more general con-
cept. Although NMF Transformations Core has no reference to NTL, the best names
are reserved for the classes that developers are most likely to work with. As the most
prominent example, the abstract concept of a transformation rule from NMF Trans-
formations Core is implemented in the class GeneralTransformationRule. This is
done to reserve the name TransformationRule to a class that developers are more likely to
work with, namely the type-safe simple transformation rule from NTL that is much more
specific than GeneralTransformationRule.

This general architecture is illustrated in figure 7.3. This class diagram also shows the
relational extensions that are presented in section 7.4.6. However, NTL actually supports
the relational extensions with own convenience methods that depend on the relational
extensions as they represent a facade of them. Thus, NTL and the relational extensions
are shipped in the same assembly. However, NMF Transformations Core is shipped
in a separate assembly. This general structure of having a framework and an internal
DSL where the framework does not depend on the internal DSL makes it possible to
reuse NMF Transformations Core independent from NTL. This extensibility of NMF
Transformations is discussed in more detail in section 7.4.9.

The architecture of NMF Transformations Core is divided into a static and a context-
aware part. The static part consists of transformations and the transformation rules and
patterns they consist of. Static means that a transformation and its rules are created
and initialized independently from any models that need to be transformed. In figure 7.4,

53

54 7. NMF Transformations

Figure 7.3.: The architecture of NMF Transformations from the large

the static classes of NMF Transformations are displayed on the left side while the
context-aware classes are on the right hand of the diagram (patterns and pattern contexts
are omitted in the diagram). As one can see in the diagram, the classes representing the
transformation and its rules do not have any references to classes that depend on a context.

Figure 7.4.: Core concepts of NMF Transformations

The classes of the static part describe the transformation structure. This includes the de-
pendencies between the transformation rules not visible in the diagram in figure 7.4. With
these dependencies, the transformation engine is able to decide which transformation rule
to apply in a specific situation. The transformation, its transformation rules and the
dependencies form a semantic model for the transformation as described in [Fow10]. How-
ever, instead of having plain attributes of limited expressiveness (as for example strings),
many references of this semantic model express an execution semantic that is represented
in code as they represent functions. As in [SK03a], this code has to allow the semantic
model for a Turing complete execution model. As Turing complete semantics are best
expressed in general purpose languages, developers are used to, these references are set
by implementing certain methods like the Transform method of a transformation rule or
providing these Turing complete parts by specifying lambda expressions.

In contrast to the static part, the dynamic part is responsible to provide support when a
transformation passes with a certain input. Thus, the transformation context represents
the transformation pass whereas the computations represent that a transformation has
been called within the context. Similar as a transformation consists of multiple transforma-

54

7.3. Stages of the transformation 55

tion rules, the transformation context consists of multiple computations. However, usually
there are a lot more computations within a transformation context than transformation
rules within a transformation as most of the transformation rules apply to multiple input
elements. To put an example, a simple copy transformation of the Palladio Component
Model [BKR09] metamodel contains about 7000 computations but only 17 transformation
rules (one for each metaclass within the Ecore metamodel except for EGenericType and
ETypeParameter that are not transformed at all).

As the dynamic part is responsible for the pass of a transformation, it is also responsible
for the computational model of the transformation. The transformation context imple-
mentation is hidden behind an interface ITransformationContext. The implementation
of this class is responsible to decide how the transformation is executed. This interface
has a default implementation TransformationContext. Many of the explanations given
in this chapter regarding the execution of a transformation are dedicated to this particu-
lar implementation. One of these implementation details is the fact that transformation
rules may only be executed once per context and input. In truth, this is specified in the
transformation context implementation only. As this implementation is hidden behind an
interface, it is easily possible to change this behavior, whenever e.g. it is not necessary to
check whether there already is a computation with the given specifications.

Fowler calls such a model an Adaptive Model representing an alternative computational
model [Fow10]. Indeed, transformation developers cannot see how the transformation is
executed just by looking at the code for their transformation, which is basically a list
of transformation rules. However, by hiding the implementation of how the semantic
is executed behind an interface, the transformation developer can override the default
behavior by putting a custom transformation context into the transformation engine. This
e.g. allows easy separate testing of transformation rules as discussed in section 7.4.8.

The trace functionality is moved to a dedicated component in order to allow some applica-
tions to have access to the trace but not to the transformation context in order to provide
a read-only access to the transformation. The trace functionality with its loads of conve-
nience methods is also hidden behind an interface. This interface only consists of a few
orthogonal trace methods. NTL as the internal DSL extends this trace by using extensions
methods to provide a whole lot of convenience methods, given that NTL knows how the
concepts of NMF Transformations Core are used to perform the transformation, e.g.
that input type can be derived statically by the type parameters of the GeneralTrans-

formationRule. Thus, NTL can provide the transformation developer a type-safe access
to the trace functionality without knowing the underlying implementation.

7.3. Stages of the transformation

A model transformation in NMF Transformations runs in several different stages.
First, the transformation is initialized, also initializing the rules and resolving dependen-
cies between rules. This happens once and independent of the input of the transformation.
The further steps only apply when the transformation is asked to transform a certain ob-
ject. In this case, a context object is created for the transformation to ensure the transfor-
mation can be run threadsafe. Second, the transformation rules applied to each possible
match. In this stage, also output for each computation is created, which in turn is recog-
nized in the trace. However, some rules can delay the creation of their outputs. When all
transformation rule dependencies are executed, these delayed outputs are created. Next,
the main Transform methods of each computation are invoked, doing the main transfor-
mation work. The execution of the Transform methods can also be delayed. Finally, the
transformation context is closed and the transformation is finished. These stages will be
further explained in the subsequent paragraphs.

55

56 7. NMF Transformations

The stage model implementation of NMF Transformationsis specific to the Transfor-
mationContext, which can be replaced by another transformation context implementation.
Another transformation context implementation might thus use a different stage model.
However, the abstract syntax of transformation rules only allows the two methods Cre-

ateOutput and Transform that specify how the transformation is to be executed. Unlike
the TransformationContext implementation that operates on plain transformation rules
as GeneralTransformationRule, another implementation may further rely on additional
interfaces or subclasses.

7.3.1. Initialization

Of all stages within a transformation, the initialization is the one that can be done without
the transformation context. As an initialized transformation is reusable, the initialization
stage may execute rather complex code as it is only executed once and thus not critical to
the overall performance.

In the initialization stage, the transformation rules within a transformation are created
and initialized, hereby resolving the dependencies to other rules.

7.3.2. Create Patterns

In this stage, the context object for a transformation is created and initialized. Together
with the transformation context, also the pattern objects registered at the transformation
are executed and pattern appliances are created. These are pattern objects aware of their
transformation context.

7.3.3. Execute dependencies

This one of the main stages in the transformation. The transformation engine invokes the
start transformation rule to transform the requested input to the requested output. This
rule is by default inferred by the types involved in the Transform method of the trans-
formation engine (see listing 7.2 for an example). By invoking this transformation rule,
the dependencies of that transformation rule are being executed. These dependencies in
turn invoke other transformation rules and following this procedure, (almost) all Compu-
tations are created that are required to fulfill the transformation request. However, some
dependencies might rely on outputs of other computations that have been delayed. These
dependencies are executed as soon as the required output is computed, which is in the next
stage. The execution of these dependencies might, of course, trigger other dependencies.

If a transformation rule is invoked with a certain input, first the transformation engine
checks whether there already is a computation with this input and the requested trans-
formation rule. If so, this computation is returned. If not, the transformation performs
the required steps to invoke the transformation rule. This roughly involves registering
the computation for tracing, executing the dependencies of the transformation rule that
apply before the computation, handling the computation and executing the dependencies
that apply after the computation. Handling a computations involves steps like creating its
output and inserting into the transformation order. However, transformation rule instan-
tiation makes it a bit more complicated than that.

7.3.4. Create delayed outputs

Computations can delay their output in 255 levels. The advantage of this technique is that
computations of all earlier delay levels (e.g. level 0 with non-delayed computations) are
available for tracing purposes. This is possible, because Computation objects are always
aware of their transformation context.

56

7.4. NMF Transformations Language (NTL) 57

7.3.5. Transform

In this stage, the Transform method is executed. Similar to the creation of outputs, this
can be delayed up to 255 levels. The Transform method is similar to the populate section
of QVT-O with the main difference that in QVT-O, the populate section of a mapping is
executed straight after the trace entry has been created. In NMF Transformations, the
Transform method is executed after all outputs of any computations have been written
to trace entries. However, the purpose is the same: In this method, the properties of the
output objects ought to be initialized (”‘populated”’).

This stage only executes the Transform method of the computations in the order that has
been derived in the previous stage when the dependencies where executed.

7.3.6. Finish Patterns

In this stage, the pattern appliances have a chance to do whatever they need to do in order
to perform their task.

7.4. NMF Transformations Language (NTL)

This section introduces NTL, the internal DSL used to specify model transformations in
e.g. C#. As the definition of NTL complies to the Common Language Specification,
it is also possible to use NTL with other languages, both this may seem a bit odd for
developers used to these programming languages.

The main purpose of NTL is to add a layer of type-safety to NMF Transforma-
tions Core. The classes in NMF Transformations Core always work with objects.
NTL adds convenience methods utilizing the generics feature of C# to provide methods to
specify dependencies in a type-safe manner. Furthermore, this section will also introduce
the relational extensions. These help to specify complex patterns as introduced in section
6.4.

First of all, section 7.4.1 introduces how to specify model transformations at all in NTL.
Afterward, section 7.4.2 shows the specification of transformation rules. Section 7.4.3
continues with the specification of dependencies between transformation rules. Section
7.4.4 gives an overview on the tracing functionality which is part of NTL. Section 7.4.5
introduces how to use transformation rule instantiation. Section 7.4.6 shows the relational
extensions to NTLwhich provide support for more sophisticated dependencies. Next, sec-
tion 7.4.7 introduces how to compose model transformations written in NTLbefore finally
section 7.4.8 discusses how to test model transformations written with NMF Transfor-
mations/NTL.

7.4.1. Specifying Transformations

Model transformations in NMF Transformations are represented by the abstract class
Transformation. The one and only abstract method within this class is CreateRules

which returns a collection of transformation rules. However, as separating the definition of
a transformation rule and the usage is potentially harmful to maintenance, transformation
rules in NTL are inferred from the nested classes by using reflection techniques. Thus,
transformations in NTL are represented by the class ReflectiveTransformation which
inherits from Transformation. A new transformation rule is specified through inheri-
tance from ReflectiveTransformation. The transformation rules of this class are then
represented by the public nested classes of that transformation class that inherit from
GeneralTransformationRule.

57

58 7. NMF Transformations

However, this procedure is breaking the framework design guidelines from [CA08], but it
is actually done to avoid the maintenance problem if new rules are added to an existing
transformation. Furthermore, it enhances the conciseness and readability of the resulting
transformation. The reason that this guideline exists and why it also has a negative impact
on the language is that it lacks of discoverability. When specifying a transformation,
developers must come to the idea to create nested classes inheriting from some classes
representing transformation rules. The IDE cannot guide him to do that. However, it has
been an important design decision to put maintenance and conciseness over discoverability.

On the other hand, nested classes are compiled into metadata whereas usual code is com-
piled to Intermediate Language (IL) code. As a consequence, the structure of the model
transformation is also preserved after the compilation as the structure is reflected in the
assembly metadata. Internally, the ReflectiveTransformation class uses this metadata
to infer the transformation rules within the transformation. In the same way, the trans-
formation structure can be inferred by dedicated tool support.

Using this class as a base class, it is possible to write model transformations with the
scheme listed in listing 7.1.

1 using NMF. Transformations ;
2
3 public class FSM2PN : Re f l e c t i veTrans fo rmat ion {
4 // Transformation r u l e s as p u b l i c nes ted c l a s s e s
5 }

Listing 7.1: A model transformation using the ReflectiveTransformation class

The example creates a model transformation for the scenario in section 4.1. However, the
transformation does not contain any transformation rule yet. Thus, when requesting to
transform a finite state machine to a Petri Net, the transformation engine would throw an
exception saying that no rule could be found to transform a finite state machine to a Petri
Net.

1 FSM. Fin i teStateMachine fsm = . . .
2 var t rans fo rmat ion = new FSM2PN() ;
3 var pn = TransformationEngine . Transform<FSM. FiniteStateMachine ,

PN. PetriNet >(fsm , t rans fo rmat ion) ;

Listing 7.2: Invoking a model transformation

The transformation is invoked as displayed in listing 7.2. The TransformationEngine class
also has some methods to transform a collection of objects or process one or many elements
without creating an output. The latter versions can be used for in-place transformations.
Furthermore, it is possible to transform an element with an existing transformation con-
text. In this way, the transformation can make use of the trace functionality of another
transformation.

In some cases, it is not feasible to specify all transformation rule of a model transfor-
mation in a single class, but refer to transformation rules defined somewhere else. To
define model transformation rules across file boundaries is actually very easy as C# does
allow to split the definition of a class among several files. However, if one wants to access
transformation rules from other model transformation rules, or rules defined stand-alone
e.g. in separate libraries, this is possible through the method CreateCustomRules. In this
method, it is possible to load a collection of transformation rules. Developers can also
reflect the transformation rules contained in other transformations, same as the Reflec-

tiveTransformation does. This can be achieved by using the static class Reflector.

58

7.4. NMF Transformations Language (NTL) 59

However, these transformation rules are then wrenched from their context, i.e. they have
a different transformation assigned to them. This is fine as long they do not rely on this
transformation.

7.4.2. Specifying Transformation Rules

Figure 7.5.: The inheritance hierarchy of GeneralTransformationRule (simplified)

Transformation rules in NMF Transformations are represented by the class Gener-

alTransformationRule. However, this class is abstract and is not intended to be used
directly. Instead, the classes TransformationRule with either two or three type param-
eters and the classes InPlaceTransformationRule with one or two type parameters are
available to be used directly. The type parameters represent the signature of the transfor-
mation rules. For transformation rules deriving from TransformationRule for example,
the first one or two type parameters represent the types of the input arguments whereas
the last type parameter specifies the output type. These classes provide a more convenient
way to specify the dependencies as they are aware of the types of input and output pa-
rameters. Figure 7.5 shows the inheritance hierarchy of the GeneralTransformationRule

class. Several classes and the very most of the methods are omitted in respect of place
limitations. If transformation rules with more than two input parameters are required, the
transformation engine can be extended with further classes. Alternatively, the framework
contains the classes TransformationRule and InPlaceTransformationRule with support
for arbitrarily many input type arguments. However, the methods of these classes are not
type safe.

Of multiple abstract methods in the GeneralTransformationRule class, only the method
CreateComputation remains not implemented. In this method, a transformation rule
must create a computation with the given transformation context and the given input.
However, in many cases it suffices to use a general computation class without further
attributes. This also improves the conciseness of the transformation. Thus, the framework
further includes the classes TransformationRule and InPlaceTransformationRule, each
in two versions for one or two input arguments. In these transformation rules, it is possible
to specify the Transform method and the CreateOutput method directly instead creating
a separate Computation subclass. However, if these simple transformation techniques do

59

60 7. NMF Transformations

not suffice as for example additional actions are required when dependencies are executed,
transformation rules can easily define their own implementation of the Computation class
in order to perform the necessary actions. However, note that the Computation class is
not type safe.

1 using NMF. Transformations ;
2 using NMF. Transformations . Core ;
3
4 public class FSM2PN : Re f l e c t i veTrans fo rmat ion {
5 public class Automata2Net : TransformationRule<FSM.

FiniteStateMachine , PN. PetriNet>
6 {
7 public override void Transform (FSM. Fin i teStateMachine input , PN

. Petr iNet output , ITransformationContext context)
8 {
9 output . ID = input . ID ;

10 }
11 }
12 }

Listing 7.3: The transformation rule FiniteStateMachine2PetriNet

Listing 7.3 shows the definition of the transformation rule that is used to transform a
finite state machine into a Petri Net. So far, it is only specified that the Petri Net should
have the same name as the finite state machine. As the method to create the output for
this transformation rule is not overridden, the TransformationRule will use the system
activator to create an instance of the PetriNet class.

The code inside the Transform method can be arbitrary general purpose code, as this
method is invoked (instead of being reflected).

7.4.3. Dependencies between transformation rules

Transformation rules can have dependencies. This means that a transformation rule may
specify another transformation rule to be invoked with a certain input whenever the trans-
formation rule is called itself. Such dependencies act as triggers. A transformation rule is
only invoked either if it is the start rule with the transformation input, or it is triggered
by one of these dependencies. Dependencies are specified in the RegisterDependencies

method.

As NMF Transformations operates on plain CLR objects, it does not have an idea
of their structure. It would be possible to read this structure using reflection techniques,
but the performance of such reflection techniques is very poor, so that by a principle
design decision, the structure of the objects that are to be transformed must be reflected
in dependencies of the transformation rules.

Multiple types of dependencies exist. Dependencies of a transformation rule can either
be executed before or after the computation. This has an influence on the order of
when a computation is forced to generate its output and the order of when the Trans-
form method is being called. Dependencies that apply before the computation are called
require-dependencies, whereas dependencies applying after a computation are called call -
dependencies. In general, the dependencies implemented in the framework invoke exactly
one other transformation rule, possibly with a different input. However, in some cases it is
required to invoke a transformation rule multiple times with a collection of inputs. Such
multiple dependencies also exist. One can identify them by the suffix ”Many”.

60

7.4. NMF Transformations Language (NTL) 61

As call dependencies are executed after the computation has set its output, it is also pos-
sible to let them rely on the output of the computation. These computations are referred
to as output-sensitive. Beware that an output-sensitive dependency of a delayed trans-
formation rule is only triggered as soon as the output is created. As a consequence, also
dependencies of this computation are executed delayed unless the dependent computations
have been created due to other dependencies.

Dependencies are set by calling the appropriate method in the RegisterDependencies

method of a transformation rule. This method gets called when the transformation rule
is initialized. A dependency object is created to represent this dependency and added to
the dependencies of the transformation rule. The methods to register these dependencies
are called after the according type of dependency. All of these methods have several
overloads that allow to specify different aspects of the dependency in a type-safe manner.
These aspects are represented by functions and the intended way to use the API is to call
these methods with lambda expressions. To enhance the readability and understandability
of the model transformation code, it is also a good practice to use named parameters.
However, a transformation developer may also write separate methods. It is possible to
specify selectors, persistors and filters. Selectors are methods that select the input for the
dependent transformation rule, given the input (in case of output sensitive dependencies
also the output) of the computation that executed the dependency. Filters filter the
computations where the dependency is executed. Persistors are callbacks that can be used
to add the resulting element of a model transformation to the target model.

Given the model transformation from listing 7.3, we can extend it by another transforma-
tion rule State2Place to transform states into places. In the FiniteStateMachine2PetriNet
transformation rule, we now have to ensure that the states within a finite state machine
are transformed using the State2Place rule. This can be accomplished in listing 7.4. Since
the dependency is written as requirement, the states of a finite state machine will be pro-
cessed prior to the finite state machine. Thus, when the Transform method of the finite
state machine is called, the trace entries of the states are available.

1 public class Fin i teStateMachine2Petr iNet : TransformationRule<FSM
. FiniteStateMachine , PN. PetriNet>

2 {
3 public override void Regi s terDependenc ies ()
4 {
5 RequireMany (Rule<State2Place >() ,
6 s e l e c t o r : fsm => fsm . Sta t e s) ;
7 }
8 }

Listing 7.4: Registering a dependency to State2Place

The Rule method in line 5 is used to get the instance of the specified transformation
rule type. As the rule State2Place is a transformation rule transforming a state into a
place, the C# compiler is able to infer the typecast of the lambda expression used as
second parameter. As this lambda expression has one parameter and returns a collection
of states, the compiler can infer that this is meant to be the selector method. Thus, it is
unnecessary to write the name of this parameter. However, it increases the maintainability.

An important aspect of maintainability is that for a given requirement change, it is easy
to find the code that needs to be changed to fulfill the updated requirements. As these
updated requirements are likely to involve that only some certain target elements need to
generated in another structure, it is desirable to have transformation code that is respon-
sible for a certain target element as close together as possible. Thus, a maintainability

61

62 7. NMF Transformations

goal for a transformation language must be to provide means to achieve this as far as
possible. NTL tries to achieve this goal by its basic structure of transformation rules and
dependencies between them specified together with the transformation rules. However,
it is an important aspect at which, the base or the dependent transformation rule, these
dependencies are defined.

Consider again the last example. Does the specification that any state of the model root
must be transformed via State2Place really to the transformation rule representing the
model root? Another option (in the eyes of some people a more maintainable one) would
be to keep the information on the concepts of states together and define this dependency
straight at the State2Place-rule. As a result, the changed requirements that state machines
no longer require states can be dealt with more effectively (which is infeasible for state
machines, of course).

For this purpose, it is possible to reverse the dependencies. This is accomplished using
the CallFor and CallForEach methods. The semantics is the current transformation
rule is called whenever another transformation rule is called with one (CallFor) or many
(CallForEach) sets of inputs.

Thus, we can also include the above dependency using CallForEach as done in listing 7.5.

1 public class State2Place : TransformationRule<FSM. State , PN. Place
>

2 {
3 public override void Regi s terDependenc ies ()
4 {
5 CallForEach (Rule<AutomataToNet>() ,
6 s e l e c t o r : fsm => fsm . Sta t e s) ;
7 }
8 }

Listing 7.5: The rule State2Place with reversed dependency

Note that the code displayed in listings 7.4 and 7.5 have exactly the same effect. Once
again, we could have omitted the parameter name.

However, in the example above, the resulting Petri Net and the places have nothing in
common, as the places have not been added to the Places property of the Petri Net. It
is possible to use the tracing functionality of NMF Transformations for this purpose.
However, in many cases it is handy to register the outcome of such dependencies right at
the same place where the dependency has been created. Thus, an overloaded version of
these dependency setting methods also accepts the definition of a persistor. This persistor
is called as soon as the dependent computations have their output set, especially before
any Transform method has been called. Listing 7.6 shows how the above listing 7.5 would
have to be extended to use persistors.

62

7.4. NMF Transformations Language (NTL) 63

1 public class State2Place : TransformationRule<FSM. State , PN. Place
>

2 {
3 public override void Regi s terDependenc ies ()
4 {
5 CallForEach (Rule<AutomataToNet>() ,
6 s e l e c t o r : fsm => fsm . States ,
7 p e r s i s t o r : (net , p l a c e s) => net . P laces . AddRange(

p l a c e s)) ;
8 }
9 }

Listing 7.6: The rule State2Place with reversed dependency and persistor

There is no limit on the amount of dependencies, a transformation rule can have. A
transformation rule can also have multiple dependencies to the same other transformation
rule. Listing 7.7 shows the example of the transformation rule used to transform the
transitions of a finite state machine. There are two dependencies to the State2Place rule,
each with different selectors (the method that selects the input for the transformation rule
defining the dependency) and persistors.

1 public class Trans i t i on2Trans i t i on : TransformationRule<FSM.
Trans i t ion , PN. Trans i t ion>

2 {
3 public override void Regi s terDependenc ies ()
4 {
5 CallForEach (Rule<AutomataToNet>() ,
6 s e l e c t o r : fsm => fsm . Trans i t i ons ,
7 p e r s i s t o r : (net , t r a n s i t i o n s) => net . Trans i t i on s . AddRange(

t r a n s i t i o n s)) ;
8
9 Require (Rule<State2Place >() ,

10 s e l e c t o r : t => t . Star tState ,
11 p e r s i s t o r : (t , p l ace) => t . From . Add(p lace)) ;
12
13 Require (Rule<State2Place >() ,
14 s e l e c t o r : t => t . EndState ,
15 p e r s i s t o r : (t , p l ace) => t . To . Add(p lace)) ;
16 }
17 }

Listing 7.7: The rule Transition2Transition with multiple dependencies

However, in some more sophisticated cases it might be necessary to create dependencies
not for a single transformation rule but for all rules that match a certain type signature.
Such dependencies are referred to as wildcard -dependencies. To specify them, the conve-
nience methods to specify dependencies all have appropriate overloads that do not take a
transformation rule. However, the compiler then can no longer infer the correct type argu-
ments and thus, the developer has to specify these type parameters. The type parameters
are also used to select the transformation rules that the dependency targets to.

63

64 7. NMF Transformations

7.4.4. Tracing

In some cases, the persistor methods for the dependencies do not suffice to fulfill the
transformation requirements, e.g. because the correspondence represented by other trans-
formation rules is necessary. In the example of finite state machines to Petri Nets, consider
the transformation of end states. Section 4.1 specifies that for each end state in a finite
state machine, there should be a corresponding transition created starting from the trans-
formed place but with no target place.

As it is required that an end state is transformed to a transition, a transformation developer
would certainly start with the transformation rule as displayed below in listing 7.8.

1 public class EndState2Trans it ion : TransformationRule<FSM. State ,
PN. Trans i t ion>

2 {
3 public override void Regi s terDependenc ies ()
4 {
5 CallForEach (Rule<AutomataToNet>() ,
6 s e l e c t o r : fsm => fsm . Sta t e s . Where (s => s . IsEndState) ,
7 p e r s i s t o r : (pn , endTrans i t i ons) =>
8 pn . Trans i t i on s . AddRange(endTrans i t i ons)) ;
9 }

10 }

Listing 7.8: An incomplete EndState2Transition rule

The above code creates an empty transition for the end state and must be extended that the
From reference of the transition contains the end state that it belongs to. This of course
can be achieved by using another dependency, either as call-dependency or as require-
dependency, with a persistor that registers the corresponding place for the end state in
the From reference of the transition. The transformation engine is responsible that the
transformation rule to transform the state into a place is only executed once at most. The
correspondence in the sense of 6.1 can be queried purely by using dependencies. However,
although this procedure in this yet very simple case, it might be more complicated in other
situations.

Thus, NMF Transformations also includes an explicit trace support that is further
extended by NTL. This trace support further has the advantage to allow more sophisti-
cated queries. However, in contrast to dependencies from section 7.4.3, it is a pure query
functionality with no side effects. This means that if a corresponding place for a state is
traced which is not or not yet transformed, a null reference is returned instead of triggering
the transformation of that state.

Similar to QVT-O, the main trace functionality is represented by the Resolve method.
Various variations of this methods exist to support a broad range of trace requests. The
different variations of this method are listed together with a description in table 7.1. These
trace methods are implemented as extension methods for convenience. Thus, they require
to add a using statement to the NMF.Transformations namespace. The methods basically
redirect the trace functions to the trace functionality shown in table 7.2.

In some occasions, it is necessary to trace not only the outputs but trace the computations
instead. This can be accomplished by using the Trace method. Again, there are different
variations that are explained in table 7.2. Unlike the Resolve method variants, these
methods are defined by the trace interface of NMF Transformations Core. This
interface is designed to be agnostic of the transformation context implementation (i.e. the
transformation engine implementation). Thus, it is also agnostic of the assumption that

64

7.4. NMF Transformations Language (NTL) 65

Trace method Description

ResolveIn Traces the output of the computation that trans-
formed the given input element(s) with the given
transformation rule.

Resolve Traces the output of the computation that trans-
formed the given input element(s) with the given sig-
nature.

ResolveManyIn Traces the outputs of the computations that trans-
formed the given collection of input elements with the
given transformation rule.

ResolveMany Traces the outputs of the computations that trans-
formed the given collection of input elements with the
given signature.

ResolveInWhere Traces the outputs that were created by the given
transformation rule and match the given criteria.

ResolveWhere Traces the outputs that were created with a matching
signature and further match the given criteria.

FindAllIn Traces the outputs of all computations with the given
transformation rule.

FindAll Traces all outputs of computations with a given input
signature.

Table 7.1.: Overview on the trace functionality to return the results

a transformation rule may only be called once per input. Thus, these methods always
return collections. Furthermore, instead of computations, these methods return objects of
a trace interface, ITraceEntry. This is done to support adding and removing entries to
the trace which is presented later in this section. Thus, the trace entries have to be casted
to computations.

65

66 7. NMF Transformations

Trace method Description

TraceIn Traces the computation that transformed the given
input element(s) with the given transformation rule.

Trace Traces the computation that transformed the given
input element(s) with the given signature.

TraceManyIn Traces the computations with the given transforma-
tion rule where the input is part of the given list. The
order of the returned computations is not necessarily
the same as the order of the corresponding input ele-
ments.

TraceMany Same as TraceManyIn but instead based on the signa-
ture.

TraceAllIn Traces all computations for the given transformation
rule.

TraceAll Traces all computations with inputs of the given sig-
nature.

Table 7.2.: Overview on the trace functionality to return the computations

With these trace methods, it is possible to finish the above transformation rule End-
State2Transition with the Transform method as shown in listing 7.9.

1 public override void Transform (FSM. State input , PN. Trans i t i on
output , ITransformationContext context)

2 {
3 var from = context . Trace . Reso lveIn (Rule<StateToPlace >() , input) ;
4 output . From . Add(from) ;
5 from . Outgoing . Add(output) ;
6 output . Input = ”” ;
7 }

Listing 7.9: The Transform method of the EndState2Transition rule

The trace is encapsulated by a dedicated trace component, hidden behind an interface.
This interface only offers a small subset of the trace functionality, as most of the trace
functionality is implemented as extension methods for this trace interface to allow a con-
sistent functionality and to have the trace component be unaware of the existence of NTL.
However, there is a default implementation to implement the trace functionality by linear
scan on a collection of computations. This is done mainly to make it easier for develop-
ers who want extend NMF Transformations. Furthermore, this enables to extend the
trace interface without breaking existing extensions. As the trace implementing methods
are virtual, extensions should override the most important methods to accelerate the trace.

There is no equivalent concept like late resolve in QVT-O. However, it is possible to trace
the computations instead of their outputs. Most trace operations only operate on trace
entries, but these trace entries can be casted to computations. These computations have
an event when their output is initialized. This event can be subscribed, making this
solution more flexible (QVT-O only allows late resolves assigned to attributes, not to local
variables, whereas there is no restriction in NMF Transformations).

The trace interface also offers two further methods that allow transformation developers
to extend the trace functionality by inserting trace entries. These trace entries have a
lightweight interface that only represent the tuple of input and output arguments as well

66

7.4. NMF Transformations Language (NTL) 67

as a transformation rule used as the trace key. Transformation developers can use this
feature to freely remove and add trace entries to the trace component, independently of
the computations that take part in the actual computation.

NTL uses this concept to provide another useful kind of trace functionality that encap-
sulates these methods that allow to change the contents of the trace. By default, a com-
putation of a transformation rule is automatically recognized by the trace functionality.
However, in some cases it is useful to create additional trace entries. The creation of such
additional trace entries can be specified using some methods provided by the Transfor-

mationRuleBase-class. These methods and their meaning is listed in table 7.3.

Trace method Description

TraceInput Creates additional trace entries that make it possible
to find an input of a computation based on some key.
A method must be provided that selects this key, given
the input of the computation. This method is available
also in in-place transformation rules. Overloads exist
that do not need a transformation rule as trace key,
but create one.

TraceOutput Creates additional trace entries that make it possible
to find an output of a computation based on a key.
This key may depend on both input and output of a
computation. A method must be provided to select
the key for a given computation. Overloads exist that
do not need a transformation rule as a trace key, but
create one.

TraceAs Creates additional trace entries, where these trace en-
tries may have completely different types. In this ver-
sion, the transformation rules used as the trace key
must be provided. Furthermore, the method takes two
methods as optional parameters. These methods spec-
ify the input and the output of the new trace entries.
If a null value is passed, NTL assumes to use the input
or output of the computation. If this is not possible
due to the transformation rule signature, an exception
is thrown.

Table 7.3.: Special dependencies for further functionality related to trace support

Currently, C# does not allow to specify constraints on type parameters that the type
parameters of a method must be base types of the surrounding class type parameters. As
a consequence, the exception in the TraceAs function is only thrown at runtime, although
this is a constraint that can be checked at compile time.

7.4.5. Transformation rule instantiation

The example of the transformation from the People metamodel into the FamilyRelations
metamodel from section 4.2 demonstrates the need of means to support transforming
inheritance hierarchies (also discussed in section 6.3) although the source metamodel of
this transformation does not even include an inheritance hierarchy.

It is of course possible to solve this transformation task using only the dependencies from
section 7.4.3. This would include separate transformation rules for transforming males
and females. These transformation rules can then be triggered by dependencies for males

67

68 7. NMF Transformations

or females, accordingly. This solution does not even necessarily break the ”Don’t repeat
yourself” principle as duplicate code can be avoided by a separate transformation rule
without an output. This procedure is demonstrated in listing 7.10. In this excerpt of a
transformation, only the transformation rules to transform males and the transformation
rule common to both females and males is shown.

1 public class Person2Male : TransformationRule<Ps . Person , Fam. Male
>

2 {
3 public override void Regi s terDependenc ies ()
4 {
5 CallForEach<Ps . Root , Fam. Root>
6 (root => root . People . Where (p => p . Gender == Ps . Gender . Male) ,
7 (root , people) => root . People . AddRange(people)) ;
8
9 Ca l lOutputSens i t ive (Rule<In i tPerson >() , (input , output) =>

input , (input , output) => output) ;
10 }
11 }
12
13 public class In i tPe r son : InPlaceTransformationRule<Ps . Person ,

Fam. Person>
14 {
15 public override void Transform (Ps . Person input , Fam. Person

transformed , ITransformationContext context)
16 {
17 transformed . FirstName = input . FirstName ;
18 transformed . LastName = input .Name ;
19 }
20 }

Listing 7.10: An implementation sample for People to FamilyRelations without inheritance
support

However, this solution yields a maintainability problem. As soon as there is a new subclass
of Person in the source model that needs to be treated differently, the reversed dependency
triggering the Person2Male transformation rule must be changed to transform only those
Person instances that are not instances of this newly introduced subclass. If the depen-
dency was not reversed, all dependencies distributed across the transformation would need
to be updated. This badly contradicts the maintainability goal to minimize the change
impact of introducing a new subclass.

This contradiction is also there in QVT-O although not as bad as in the above example. If
a metaclass representing the input of a mapping gets another subclass that has to treated
differently, this mapping has to be turned into a disjunct mapping and all references must
be updated.

To escape this maintenance dilemma, NMF Transformations has a built-in support
for inheritance. Transformation rules may declare that they are able to create the output
of other transformation rules. This procedure is called instantiating. As a consequence,
the computation of the instantiated transformation rule is not any more requested to cre-
ate its output. Instead, the output is copied from the computation for the instantiating
transformation rule. Furthermore, instantiation implicitly includes a require dependency.
In contrast to e.g. disjunct mappings in QVT-O, instantiations can be nested, i.e. a trans-

68

7.4. NMF Transformations Language (NTL) 69

formation rule instantiating another transformation rule can itself again be instantiated.
Furthermore, instantiations can be attributed with a separate filter.

Marking a transformation rule as instantiating for another is done by calling the method
MarkInstantiatingFor. Sadly, unlike Java, .NET does not allow constraints on type
parameters in the direction that the type parameter is a super class of another type. Thus,
the validity of the calls to MarkInstantiatingFor cannot be checked by the compiler.
Instead, it is checked at runtime during initialization of the transformation.

Consequently, when there is some sort of inheritance, there is also some sort of abstract and
sealed elements. Thus, the class AbstractTransformationRule represents a simple trans-
formation rule which must be instantiated by another transformation rule. However, the
whole magic behind this class is that an exception is thrown whenever the transformation
rule is requested to create an output for a computation.

The above example rewritten using instantiation is shown in listing 7.11.

1 public class Person2Male : TransformationRule<Ps . Person , Fam. Male
>

2 {
3 public override void Regi s terDependenc ies ()
4 {
5 MarkInstant iat ingFor (Rule<Person2Person >() , p => p . Gender == Ps

. Gender . Male) ;
6 }
7 }
8
9 public class Person2Person : AbstractTransformationRule<Ps . Person

, Fam. Person>
10 {
11 public override void Transform (Ps . Person input , Fam. Person

output , ITransformationContext context)
12 {
13 output . LastName = input .Name ;
14 output . FirstName = input . FirstName ;
15 }
16
17 public override void Regi s terDependenc ies ()
18 {
19 CallForEach<Ps . Root , Fam. Root>(
20 root => root . People ,
21 (root , people) => root . People . AddRange(people)) ;
22 }
23 }

Listing 7.11: An implementation sample for People to FamilyRelations with instantiation

In contrast to the implementation in listing 7.10, it is transparent for the Person2Person
transformation rule that there is a special treatment for male people. Furthermore, this
technique yields a good tracing ability, as the transformation rule Person2Person rep-
resents every transformation from a person in the People metamodel to a person in the
FamilyRelations metamodel.

The instantiation mechanism seems quite similar to inheritance of classes. However, there
is a huge difference. A transformation rule can also instantiate another transformation

69

70 7. NMF Transformations

rule with multiple input parameters. In this case, given a set of input elements for a trans-
formation rule, there might be multiple transformation rules that can instantiate this rule.
Instead of applying a sophisticated method of finding the best match, NMF Transfor-
mations just takes the first transformation rule that fits the criteria. The transformation
rules are checked in the same order as in the Rules collection of the transformation which
is the same order of how they are returned in the CreateRules method which in turn for
reflective transformations is the order of how they appear in the code.

7.4.6. Relational Extensions

Dependencies as introduced in section 7.4.3 can only describe the circumstance that a
computation directly triggers another. However, in some cases this is not sufficient. Some
cases require more complex patterns including dependencies to more than one computa-
tion whose input arguments are not linked by any reference. If input elements are linked
through a reference, it is usually possible (and more performant) to use ordinary depen-
dencies instead. If they are not, then Relational Extensions provide means to concisely
specify when a transformation is called.

The purpose of the relational extensions of NTL is to provide means to support com-
plex patterns for transformation rules as discussed in section 6.4. The name Relational
Extensions comes from the intention that these extensions make it possible to write trans-
formation rules that come very close to the relations from QVT-R, except for their lack
of bidirectional transformation support. Although the name suggests it, the Relational
Extensions are not implemented as extensions, i.e. they are implemented within the same
assembly. The reason are some convenience methods that simplify the syntax for the
transformation developers. The design rationale behind this decision is that an easier syn-
tax for transformation developers is yet more important than the clear code separation to
separate assemblies.

The relational extensions use the pattern extension mechanism. Each relational expression
registers a transformation rule pattern for the transformation rule in quest. The conve-
nience methods mentioned above introduce a shortcut to provide these pattern objects
using the query syntax of C#.

Thus, the IEnumerable interface from the Base Class Library of .NET has been extended
to the interface IGrowableSource that represents a collection that notifies clients when an
item is added to the collection. Thus, such growable sources can specify when a transfor-
mation rule is to be triggered and every new element of this pattern is then automatically
forwarded to call the parented transformation rule.

As an example, consider once again the transformation from People to FamilyRelations
introduced in section 4.2. Consider that this transformation is extended by the deduction
of households. This might be required for marketing purposes as for example it usually
suffices to send a brochure only once per household. To do this, the transformation can
use the heuristic that spouses live together in one household and thus, either one or two
adults live together in a household together with their children. We further assume that
the adults are of different sex for the sake of simplicity. This is because to compare sets
more easily, we need an order on them. This is easy when we have men and women as
we can create ordered tuples by putting either of them in front. In this case, we decide to
take the woman in front. The code to call the transformation rule to create a household
model element is shown in listing 7.12.

70

7.4. NMF Transformations Language (NTL) 71

1 public class Spouses2Household : TransformationRule<Female , Male ,
Household>

2 {
3 public override void Regi s terDependenc ies ()
4 {
5 WithPattern (from mom in Rule<Person2Female >() .

ToComputationSource ()
6 from dad in Rule<Person2Male >() . ToComputationSource ()
7 where (mom. Input == null | | mom. Input . Spouse == dad . Input)
8 && (dad . Input == null | | dad . Input . Spouse == mom. Input)
9 select new Tuple<Female , Male>(mom. Input , dad . Input)) ;

10 }
11 }

Listing 7.12: Applying pattern matching to create households

What exactly does the code above do? It specifies a patternto describe when the transfor-
mation should be called. If a transformation rule requires two input arguments, the public
API of NMF Transformations requires a tuple of the involved input arguments. Thus,
the pattern has to return tuples of the types according to the input type parameters of
the transformation rule. These tuples are then used to call the transformation rule with
the specified contexts.

The syntax in listing 7.12 should be familiar to C# developers, as this syntax is also
applied in the Language Integrated Query (LINQ)1 although the majority of the developers
probably did not yet recognize that this syntax could be used outside of this framework.
If we look at the type of the expected parameter of the WithPattern method, it expects a
function that takes a transformation context as parameter and returns a relational source
of tuples of the transformation rules input type parameters. However, this function type is
used as a monad for the tuple type (see section 3.3.5) and since the appropriate methods
are implemented, the C# query syntax can be used to specify this function.

However, instead of a unit function, the method ToComputationSource is implemented.
Given a transformation rule, this method returns a function that returns for each transfor-
mation context an object that collects the computations of this transformation rule under
the given context. Further overloads exist that can further filter the computations by a
given filter method. The type of the object collecting the computations of this transfor-
mation rule is a relational source of computation wrappers. The reason to wrap these
computations is that the computation class is an abstract non-generic base class that is
not aware of the type of its input and output parameters. The wrappers, implemented as
structures for performance reasons, wrap these computations and provide a typed access.
Thus, the compiler knows that i.e. the expression mom.Input in line 7 must be of type Per-
son, as this is the input type parameter of the according Person2Female transformation
rule. This enables the IDE to support the developer with useful functionality like code
completion. Furthermore, the filter specified in line 7 and 8 can completely be checked by
the compiler during development.

By using a syntax that developers are familiar with, it is possible to let them specify
patterns for transformation rules in a way that is familiar to them. Thus, the acceptance
of the transformation language is improved and the maintenance effort is lowered.

The filter on the above pattern may get more sophisticated. If this is the case, the developer
can move this code into a separate method that is called within the where statement. As

1http://msdn.microsoft.com/en-us/library/vstudio/bb397926.aspx

71

http://msdn.microsoft.com/en-us/library/vstudio/bb397926.aspx

72 7. NMF Transformations

the developer names this method accordingly, the query statement is still pretty much
understandable in what it does. This method is (same as the lambda expression in the
where-clause) then executed for every tuple of in this case females and males that passed
previous filters.

1 WithPattern (from mom in Rule<Person2Female >() . ToComputationSource
()

2 from dad in Rule<Person2Male >() . ToComputationSource ()
3 where I sAl lowedPair (mom, dad)
4 select new Tuple<Female , Male>(mom. Input , dad . Input)) ;

Listing 7.13: The above pattern using a separate filter method

A huge advantage of moving rather complex predicates into separate functions is that
these predicates become testable. By setting the accessibility of these predicate functions
to internal scope, test assemblies can be configured to access these internal methods
while clients of the library cannot.

An example of this is shown in listing 7.13 where the complex predicate of a tuple of
when to match a woman and a man is moved to a dedicated method accordingly named
IsAllowedPair.

The order of the statements within the query expression is of great importance as it
determines which extension methods are called in what sequence. Same like any query
syntax, the query syntax within the Relational Extensions is translated into a sequence of
calls to extension methods. As an example, listing 7.14 shows how the above pattern is
translated into the sequence of calls to extension methods. Although this representation
is more understandable in how the developer can get a glimpse of how the code actually
works, it is also much less concise and thus less understandable in what the intention
behind this code is.

1 WithPattern (Rule<Person2Female >() . ToComputationSource ()
2 . SelectMany (mom => Rule<Person2Male >() . ToComputationSource () , (

mom, dad) => new {mom=mom, dad=dad })
3 . Where (pa i r => I sAl lowedPair (pa i r .mom, pa i r . dad))
4 . S e l e c t (pa i r => new Tuple<Female , Male>(pa i r .mom. Input , pa i r . dad

. Input))) ;

Listing 7.14: The above pattern using method chaining

An important point of what this representation unveils, is that the unit function ToCom-

putationSource is actually called for each female person that can act as a mom, thereby
creating a new collection each time. Thus, it is better to move this call outside the pattern
finally arriving at the code shown in listing 7.15.

72

7.4. NMF Transformations Language (NTL) 73

1 public class Spouses2Household : TransformationRule<Female , Male ,
Household>

2 {
3 public override void Regi s terDependenc ies ()
4 {
5 var moms = Rule<Person2Female >() . ToComputationSource () ;
6 var dads = Rule<Person2Male >() . ToComputationSource () ;
7
8 WithPattern (from mom in moms
9 from dad in dads

10 where I sAl lowedPair (mom, dad)
11 select new Tuple<Female , Male>(mom. Input , dad . Input)) ;
12 }
13 }

Listing 7.15: Applying pattern matching to create households, updated

However, in this way the method responsible to filter the candidate tuples of moms and
dads can hardly rely on the context of the underlying computations. This can only be
achieved by extracting the transformation context from any of the computation wrappers
by calling the reference Computation.Context. However, the computation source object
may also specify to allow null values. In this case, the according computation wrapper
wraps a null reference which obviously does not have a context set. A possible solution
for this dilemma is to make the function that is hidden in listing 7.12 a little bit more
explicit. Listing 7.16 shows the above pattern using a lambda expression instead of pure
query syntax.

1 WithPattern (context =>
2 from mom in Rule<Person2Female >() . ToComputationSource (context)
3 from dad in Rule<Person2Male >() . ToComputationSource (context)
4 where I sAl lowedPair (mom, dad)
5 select new Tuple<Female , Male>(mom. Input , dad . Input)) ;

Listing 7.16: Using a lambda expression for more sophisticated filters

Using the version of listing 7.16, the transformation developer may access the transfor-
mation context within the where clause more directly, although this has not been done
in the above example. The syntax, however, is very similar to the syntax in listing 7.12.
However, this solution yields the problem that again, the method ToComputationSource

is called for each mom candidate which yields a performance problem.

The keywords from, where and select are the only keywords within the query syntax of
C# that have been implemented. Others, especially group by have not been implemented,
as they do not make sense in this scenario.

The classes involved in the implementation of the Relational Extensions and thus repre-
senting the abstract syntax for the Relational extensions are shown in figure 7.6. The
only purpose of the classes CompositeSource, SelectSource and FilteredSource is to
implement the query syntax used in the Relational Extensions. As they implement monad
methods, they have several type parameters which have been omitted in the diagram for
better clarity.

7.4.7. Composing Transformations

Model transformations in NMF Transformations mainly consist of their transformation
rules and patterns. As transformation rules are .NET classes, they can be easily moved to

73

74 7. NMF Transformations

Figure 7.6.: The classes involved in the Relational Extensions

separate files and even separate assemblies. These assemblies can even be signed to be con-
fident that they are not forged. When using a reflective transformation, these additional
transformation rules can be specified by overriding the CreateCustomTransformation-

Rules method. If the transformation directly inherits from the Transformation class,
these rules must be specified in the same way as any other rules.

As running a model transformation in NMF Transformations is a special method call,
same like in most other internal DSLs, model transformations can easily use other model
transformations to call them. It is not necessary as in QVT-O to declare this in front.
However, it may of cause be useful to import the namespace of this other transformation
via a using statement. Thus, chaining is as easily accomplished as in general purpose
code.

The composition of model transformations is more complex. Transformation rules in NMF
Transformations are represented as instances of classes. These classes are to be instan-
tiated within the transformation container class. By default, a reflective transformation
instantiates all its public nested classes. However, this procedure can easily be overwritten
thereby instantiating any classes representing any transformation rules. These transfor-
mation rules do not have any restrictions except that they must be accessible from the
transformation that uses it. Especially, the classes representing transformation rules to be
used in a composed transformation may also be embedded into another assembly. Thus,
it is possible to build up a transformation library and put this into a separate assem-
bly. As assemblies can be digitally signed in .NET, developers can be sure that these
transformation rules are not being tampered with.

What makes transformation composition hard to predict is the configurability of trans-
formation rules. Transformation rules always have a reference to the transformation that
contains them. By casting this reference to the actual transformation type, transformation
developers can make the transformation rule depend on some properties or, as transforma-
tion rules are nested classes, even private fields of the containing transformation. However,
if such procedure is applied, the transformation rules cannot be used in a different trans-
formation unless of course this other transformation is subclass of the transformation the
transformation rule originally was designed for.

74

7.4. NMF Transformations Language (NTL) 75

Model transformations that mainly use classes from other libraries should inherit directly
from Transformation and override the CreateRules method directly as the reflection of
transformation rules is meaningless. This method is to return a collection of transformation
rules that afterward will be used as transformation rules of the Transformation. This
collection is only retrieved once and copied into another collection. The intended way to
specify the transformation rules is to use the co-method functionality of .NET. Listing
7.17 demonstrates this procedure.

1 public class FSM2PN : Transformation
2 {
3 protected override IEnumerable<GeneralTransformationRule>

CreateRules ()
4 {
5 yield return new Automata2Net () ;
6 yield return new State2Place () ;
7 . . .
8 }
9 }

Listing 7.17: A transformation using transformation rules from other assemblies

In this way, a transformation can easily be composed of transformation rules either used
by other transformations or contained in a transformation library. These transformation
rules can be extended with reversed dependencies and instantiations thus calling transfor-
mation rules representing possible extensions. However, it is not possible to replace entire
transformation rules.

However, in some cases it is necessary to include whole transformations instead of few
transformation rules. In this case, any changes made to the included base transformation
should be transparent to the extension transformation. Especially when the base transfor-
mation is itself extended by a further transformation rule, any transformation extending
this base transformation should not be aware of this and should not need to reference this
transformation rule.

There are two ways to achieve this. The first and simplest possibility would be inheriting
from this transformation. If the base transformation is a ReflectiveTransformation,
then the reflection step will reflect all transformation rules that are contained in either
of the transformation classes. As the transformation class is a direct subclass of the
transformation that is to be extended, all transformation rules will automatically work,
even if they cast the transformation to the type of the extended transformation as such
a cast operation is still valid. Thus, such an extension can be made almost without
hesitation.

The second option is to use the Reflector class and load patterns and transformation rules
from another transformation. However, this will only be possible if the transformation rules
does not rely on the exact type of their containing transformation.

When using the first option, using the features of ReflectiveTransformation, it is also
possible to override existing transformation rules. However, as transformation rules in
NMF Transformations are represented by classes, overriding other transformation rules
must respect the capabilities of the type system of .NET. As .NET only supports covariance
and contravariance in interfaces, it is e.g. impossible to change the input or output types
of a transformation rule. Thus, the overriding rule must inherit from the overridden
rule. It can then override the main methods CreateOutput and Transform. To mark the
transformation rule as overriding another transformation rule, it must be decorated with
the OverrideRuleAttribute.

75

76 7. NMF Transformations

1 public class ExtendedFSM2PN : FSM2PN
2 {
3 [Overr ideRule]
4 public class Automata2Sophist icatedNet : Automata2Net
5 {
6 public override PN. Petr iNet CreateOutput (. . .)
7 {
8 return new PN. Soph i s t i c a t edPe t r iNe t () ;
9 }

10 }
11 }

Listing 7.18: A transformation using transformation rules from other assemblies

For example, the code demonstrated in listing 7.18 shows how to extend the transfor-
mation from listing 7.3 in that way that instead of an ordinary PetriNet, an instance
of the class SophisticatedPetriNet is created as root element for the resulting Petri Net.
However, if other rules reference the Automata2Net rule, this reference will automatically
be redirected to the new Automata2SophisticatedNet rule. In this way, all transforma-
tion steps can easily be extended by transformation composition. However, overriding
a transformation rule must be made explicit by applying the OverrideRuleAttribute.
If this attribute was omitted in listing 7.18, both transformation rules, Automata2Net
and Automata2SophisticatedNet would coexist next to each other but transformation rules
referencing the Automata2Net rule would continue to do so.

However, in some cases one might prevent that other transformation rules may override
a behavior of a certain transformation rule. The simplest method to achieve that is to
mark the class representing this transformation rule sealed. As overriding transformation
rules must inherit and inheritance from this rule is made impossible, overriding this rule
is impossible. If this was too strict, it would also be possible to prevent overriding certain
parts of the transformation rules, e.g. the RegisterDependencies method, by marking
that method as sealed.

The example of overriding the RegisterDependencies method also shows that this over-
riding mechanism - as it is based on inheritance of the transformation rule classes - is still
a white-box technique. Thus, when overriding a transformation rule, the developer must
know how this transformation rule works.

7.4.8. Testing

As mentioned in section 6.8, testing is an essential part of the software development process.
Besides that an implementation of a model transformation language needs to be properly
tested, it is essential for a model transformation language to provide utilities to test the
resulting model transformations.

Same like any other software component, model transformations can of course be tested
with a black box testing strategy. This means that the model transformation is treated
as a black box and then fed with a model that is just large enough to demonstrate some
problems that might occur. Afterward, the test compares the result that has been created
by the transformation with the expected result that the transformation should have re-
turned. Test cases for model transformation testing can be derived from the specification
independent of the transformation language [Gue12]. ed with a model that is just large
enough to demonstrate some problems that might occur. Afterward, the test compares
the result that has been created by the transformation with the expected result that the

76

7.4. NMF Transformations Language (NTL) 77

transformation should have returned. Test cases for model transformation testing can be
derived from the specification independent of the transformation language [Gue12].

However, the specification of a model transformation is rarely as complete to only allow a
single model as output. Instead, in most cases a variety of possible results is valid. Recent
research tackled this problem by the introduction partial oracles [Gue12, FMSA13] that
allow to check only those parts of the result model that are completely determined by the
specification. However, such a partial oracle is not available for NMF Transformations.

Other approaches for model transformation testing generate test cases for a model transfor-
mation by analyzing the model transformation using white-box techniques [HLG13, WS13].
However, also these white-box techniques attempt to test the resulting model transforma-
tion as it. This yields the problem that a fault in a model transformation is hard to locate.
Thus, it is desirable to test not only the whole transformation as it, but also tiny bit of
the transformation.

Model transformations in NMF Transformations consist of transformation rules and
transformation patterns. As the transformation rules can have complicated dependencies
between them, the model transformation as a conglomerate of these transformation rules
can be difficult to test. Thus, it is useful to be able to test the transformation rules and
the transformation patterns separately.

NMF Transformations supports testing the transformation rules separately. There are
two types of artifacts that need to be tested separately. The first type is methods that
are part of the transformation rules, especially the Transform method and the Create-

Output method. The whole difference to any other methods of an arbitrary class really
is that these methods are to be executed by the transformation context within NMF
Transformations. However, unit tests can still call them directly as these methods are
public.

However, these methods need an instance of the transformation context. For such testing
purposes, NMF Transformations contains another implementation of the ITransfor-

mationContext interface, namely the MockContext that as the name implies mocks the
transformation context. When trying to transform anything with a mock context, this
results in a thrown exception. However, the mock context eases setting up the testing en-
vironment, especially including the trace support. As a reason, a mock context allows test
engineers to add computations to the trace without actually calling any transformation
rule and the dependencies. These computations are then represented by mocked compu-
tations that throw exceptions when asked to execute the Transform method. In this way,
the mock context can provide a proper testing environment to test transformation rules
separately using usual testing frameworks such as MSTest or NUnit.

Testing the CreateOutput method

In most cases, creating the output does not involve the tracing functionality and thus, the
CreateOutput method can be tested straight away. In cases where the trace functionality
is needed, the test environment can be set up same as for the Transform method which is
described in the next paragraph.

Testing the Transform method

Setting up the testing environment for the Transform method usually involves setting
up an environment for tracing. This can be done most conveniently by using the class
MockContext. Instead of executing the dependencies of a transformation, looking for in-
stantiations and performing every step that is necessary for the execution semantics, the
MockContext simply creates a trace entry (if this does not exist yet) and returns the

77

78 7. NMF Transformations

resulting computation. Furthermore, unlike TransformationContext, the computation
collection of the MockContext is not read-only. As there is also a mock class for com-
putations, the developer can simply add such mocked computations that are then also
recognized for the trace functionality.

1 [TestMethod]
2 public void EndState2Trans it ion Transform Test () {
3 // s e t up t e s t i n g environment
4 var fsm2pn = new FSM2PN() ;
5 var context = new MockContext (fsm2pn) ;
6 var endState = new FSM. State ()
7 { Name = ”Test ” , IsEndState = true } ;
8 var endPlace = new PN. Place () { Name = ”Test ” } ;
9 var endTrans i t ion = new PN. Trans i t i on () ;

10 var endState2Trans i t ion = fsm2pn
11 . Rule<FSM2PN. EndState2Transit ion >() ;
12 context . Computations . Add(fsm2pn . Rule<FSM2PN. State2Place >() ,

endState , endPlace) ;
13 // perform method under t e s t
14 endState2Trans i t i on . Transform (endState , endTrans it ion , context) ;
15 // a s s e r t i o n s
16 . . .
17 }

Listing 7.19: A test case to test the EndState2Transition rule

Listing 7.19 demonstrates this unit testing of single transformation rules by testing the
EndState2Transition rule from listing 7.9. This rule uses the trace to find a corresponding
place for the end state in order to register the resulting transition with the place. Adding
a mock computation to the computations in the mock context as done in line 12 enables
the Transform method of the EndState2Transition rule to find the endPlace when tracing
the corresponding place for the endState.

However, the Transform method may also call another transformation rule directly. For
this purpose, the Computations collection is an ObservableCollection that provides an
event whenever the collection is changed.

Testing the RegisterDependencies method

Most method calls in the RegisterDependencies method are done to register dependen-
cies. For this purpose, the MockContext also allows to call the dependencies of a transfor-
mation rule directly. Furthermore, in case of wildcard dependencies, it is especially useful
to test how many dependencies were actually generated. This can be observed by checking
the Dependencies collection of the transformation rule. Note that, of course, reversed
dependencies are saved on their base transformation rules.

Testing the transformation patterns depends on the patterns that are being used. However,
the MockContext mock of the transformation context may be useful for this purpose, too.

7.4.9. Extensibility

An important difference of internal DSLs compared to external DSLs is the extensibility.
Internal DSLs are represented by frameworks on their own. By designing these frameworks
in an extensible manner, the internal DSL can be extended not only by the developer of
the framework, but also by the developer of the model transformations. As a consequence,

78

7.4. NMF Transformations Language (NTL) 79

as soon as an internal DSL does not suffice for some sophisticated model transformation
tasks, the whole language can be extended to offer these capabilities.

Thus, both the model transformation framework NMF Transformations Core and
the internal DSL NTL must be designed extensible, so developers can easily extend these
frameworks to extend the framework, if necessary.

For a framework like NMF Transformations Core, this extensibility is a core require-
ment. After all, it is what makes a framework different from a library [CA08]. Fortunately,
there are a couple of guidelines for .NET frameworks (including .NET itself) that have
been documented in [CA08] to make it possible that frameworks have the same look and
feel as the .NET framework itself. Furthermore, these guidelines are enforced by static
code analysis. This static code analysis is included in Visual Studio as Code Analysis.
There are different rule sets available to automatically check solutions for design flaws.
The framework NMF Transformations Core has been developed to satisfy all of the
existing rules by Microsoft. There are only three points in the code of the framework that
conflict with a code analysis rule. These points are subject to explicit design decisions
against a particular and are documented in the code by an attribute suppressing the code
analysis warning.

Most transformation developers will use NMF Transformations Core through NTL.
Being an internal DSL, NTL can easily extended not only by framework developers but
also by transformation developers. After all, Cuadrado et al. considered the extensibility
important enough to design RubyTL, an internal transformation DSL with a stress on
extensibility (based on Ruby, see [CMT06]). In fact, NTL is implemented as a separate
framework that provides a language-like public API.

The scenario of extending an internal DSL is awkward. As a reason, internal DSLs usu-
ally rather concentrate on avoiding syntactic noise for the users of the resulting language
rather than complying to guidelines for extensible frameworks. Thus, the design goals of
extensibility and the avoidance of syntactic noise contradict. However, the implementation
of NTL tries to stick to the guidelines regarding extensibility as far as possible, achieving
a fair trade-off between extensibility and avoidance of syntactic noise. As a consequence,
also the implementation of NTL is continuously checked by static code analysis although
not all of the available rules are applied. Furthermore, NTL extends as less as possible
concepts from NMF Transformations Corein order to raise the chance that it grace-
fully integrates with other extensions of NMF Transformations Core. In fact, the
transformation rule types provided by NTL can not only be used with the default trans-
formation type of NTL, they can used with any implementation instead. Furthermore,
the ReflectiveTransformation also allows to load custom transformation rules. The
main reflection-based functionality of ReflectiveTransformation has been moved to a
separate component to allow other implementations of Transformation access the same
functionality.

However, to have the public API of NTL behave like a language on its own, it intentionally
breaks some of the design guidelines from [CA08] mentioned above. Such breaches to the
design guidelines are explicitly documented in the source code by attributes suppressing
the code analysis warnings. The implementation often breaks one of the following code
analysis rules:

• CA1011:Consider passing base types as parameters: This guideline is broken
for large parts of the public API as the API often uses more specific types for
parameters specifying a rule parameter. This is used to have the C# compiler infer
the generic type parameters of a method, as soon as the transformation developer
specifies a transformation rule types with the runtime type. This is used to reduce
the syntactic noise of the resulting C# code.

79

80 7. NMF Transformations

• CA1004:Generic methods should provide type parameter: As discussed in
section 7.4.3, it is sometimes handy to be able to specify dependencies without know-
ing the exact type of the transformation rule. In this case, it is often necessary to
specify the type parameters of a method explicitly although this is prohibited by
CA1004. This does not have a direct impact on extensibility but instead has an
impact on readability. However, this is an intended behavior, as the alternatives
within the C# syntax seemed worse.

• CA:1006:Do not nest generic types in member signatures: Although the
documentation encourages developers to not suppress this code analysis rule for the
sake of easy-to-read public APIs, it has been turned off for the entire NTL project.
As a reason, this rule occasionally turns out to be harmful to the maintainability
and extensibility of the resulting framework. As an example, the rule prevents the
usage of monad implementations.

• Use the query syntax for anything other than collections: This guideline is
not enforced by means of static code analysis. However, it is broken intentionally
by the relational extensions that implement the query pattern to reduce syntactic
noise. As the query pattern originally has been developed for collections, its usage
to specify the composition of functions may seem odd for some developers, but it
helps to reduce the syntactic noise and thus to produce cleaner transformation code.

Except for the listed exceptions, the implementation of NTL satisfies all design guidelines
for frameworks and thus extending it should feel as natural as possible to C# developers.

7.5. Drawbacks & Future Work

Although NMF Transformations provides support for a variety of model transforma-
tion tasks, it is not possible to solve every transformation problem with these tools. This
section describes these scenarios where neither NMF Transformations nor NTL can
help to solve them in a maintainable way. However, some scenarios may be supported in
future versions. In these occasions, it is evaluated how these scenarios could be supported
using NMF Transformations and NTL.

7.5.1. Trace serialization

The trace of transformations generated using NMF Transformations is not serialized,
currently. Thus, it can only be queried while the transformation context is still in memory.
As a reason, NMF Transformationsoperates on plain CLR objects and therefore does
not know how to serialize these objects. Furthermore, it might be a good idea to only
include a reference in the serialization of the trace instead of the full object. Serializing
the full object would result in large trace files that also contain both input and output
models.

However, the framework would allow a separate serialization component to serialize the
trace. Furthermore, the trace component allows to add a computation to the trace only,
such that NMF Transformations makes it possible to load the trace from a file and
running a model transformation with that trace functionality as basis. However, this re-
quired to persist the references from the trace to the models. An implementation of a trace
serialization would be specific for this referencing scheme. However, trace serialization has
not been implemented for any such referencing scheme.

80

7.5. Drawbacks & Future Work 81

7.5.2. Change propagation

Change propagation means that a model transformation is aware of changes made to the
output model after the transformation has been performed. In case of such a modification,
the output model should change accordingly to reflect this change without having to run
the model transformation once again. However, so far there is hardly any model transfor-
mation language available that supports this kind of change propagation and thus, there
are a row of open research questions, including the question of the types of changes that
are actually supported.

As NMF Transformations operates on in-memory representations of models, this could
be possible. Many collection classes provide an event to notify clients when they are
changed. The existence of this event can be queried e.g. by checking whether the collection
class implements the interface INotifyCollectionChanged. In a similar way, a class can
implement the interface INotifyPropertyChanged to inform clients that a property has
been changed, again using an event. These events could be used to notify a framework and
thus executing event handlers that previously had been set by the model transformation,
executing a dependency on a saved transformation context and thus propagating this
change to the target model by a previously defined binding.

Such a binding technology even exists in the .NET framework, more specific in the Win-
dows Presentation Foundation (WPF)2, and is used to bind elements of a user interface to
properties of a view model. WPF essentially uses a different representation of properties,
called dependency properties, that does not have the usual type restrictions. Instead, these
properties allow to assign rather complex binding objects to them instead of values. These
binding objects have the functionality that they provide a function to obtain the actual
property value and also inform the client object whenever this value happens to change.

WPF actually even allows more complex expressions as paths. It tracks the path and is
aware of any changes that may occur along this path. This means that a property of the
target model not only can be bound to a property of the source model but also can be bound
to a more complex expression. Consider for example a target model that has a person
model with just a plain street. With the data binding technology this street property
can be bound to the Street property of the first Address class instance of a collection
named Addresses. Thus, that street is not only updated when the street property of the
primary residence changes but also when the primary residence changes. As using the
WPF technology is completely optional, the transformation developer can specify which
correspondence is set once and which correspondences should be maintained.

Furthermore, the data binding technology can even be applied in both directions and
a value converter can be placed in between. In this way, transformations with NMF
Transformations and NTL can be used to establish a self-maintaining correspondence
between multiple models.

The advantage of reusing WPF data binding for change propagation is clearly that this is
a technology that is ready to be used. However, it has been designed for user interfaces
rather than large models that need to be transformed. Furthermore, it requires a very
representation for the target model that lacks of performance.

However, as establishing such a self-maintaining correspondence links between in-memory
models to the best of my knowledge has not been done before, it would definitely be a
subject of future work to demonstrate this capability. All that needs to done for this is
creating new kinds of dependencies that are aware of changes and persist the elements
in observable objects. However, extensions to the framework also yield extensions in the
internal DSL to serve that framework and thus, also NTL would require some extensions.

2http://msdn.microsoft.com/en-us//library/ms754130.aspx

81

http://msdn.microsoft.com/en-us//library/ms754130.aspx

82 7. NMF Transformations

7.5.3. Bidirectionality

Bidirectionality in model transformations means that the same model transformation can
be applied in both directions. Consider the example from section 4.1. A bidirectional model
transformation servicing this transformation task would actually capable of transforming
a Petri Net back to a finite state machine. This little toy example already shows that
bidirectional transformations yield a row of problems as clearly the transformation from
Petri Nets to finite state machines is not always possible. In such a scenario, a model
transformation has then to recognize that the transformation is impossible to accomplish
and thus has to cancel the operation with an error message.

This is a problem typical for bidirectional model transformations. It is hard to give proper
conditions when a model transformation task is reversible and what the actual domain of
this reversed model transformation is.

However, even if these problems would be solved someday, NMF Transformations still
operates by executing methods of a Turing complete language. However, reversing an
operation is hardly possible by reflecting how this operation affects a model. Thus, the
reverse operation has to be specified separately same as the persistors of the dependencies.
Hence, the efforts of specifying both directions is nearly the same as specifying both
transformation directions separately.

On the other hand, some bidirectional model transformations are indeed asymmetrical in
the way the one direction is more complex than the backward direction. An example of
such a model transformation is the Petri Nets to State Charts case that will be introduced
in more detail in chapter 10 (although bidirectionality was not a requirement in this case).
To obtain a Petri Net from a State Chart, one simply has to look at the Basic and
HyperEdge elements and ignore the compound states.

The way how dependencies are specified in NTL are not suitable for bidirectional model
transformation and thus, it is infeasible to use NTL for bidirectional model transforma-
tions. However, NMF Transformations Core as the underlying framework can be
reused for bidirectional model transformations when creating an additional internal DSL
specifically for bidirectionality. However, this may be a subject of further research.

7.5.4. Model synchronization

Model synchronization means that two or more models are synchronized using certain
correspondence rules. If one again considers the transformation problem from section 4.1,
this meant that whenever there is a state in the finite state machine with the name ”s1”,
there must be a corresponding place with the name ”s1” in the corresponding Petri Net. If
there is one, the transformation may reuse this place, otherwise a state has to be created.
Conversely, if there is a place named ”s1”, there must be a state in the corresponding finite
state machine.

Much like the bidirectionality support, model synchronization cannot be accomplished with
NTL. Furthermore, NMF Transformations Corecurrently suspects transformation
rules to create their output dependent on their input and the transformation context only.
For model synchronization, this is not feasible, as also the context of the transformation
rule call is important. Thus, even NMF Transformations Core had to be modified to
support model synchronization.

A very interesting version is the combination of change propagation and model synchro-
nization. As NMF Transformations operates on in-memory representations, a model
synchronization can be used to install a synchronization link between two models con-
forming to different metamodels and have them synchronized automatically. In this way,

82

7.5. Drawbacks & Future Work 83

the model transformation does not really transform models but rather installs a corre-
spondence link between different models. An application scenario is Vitruvius [KBL13]
where the idea is to use multiple models to specify different aspects of a system. A model
transformation establishing a synchronization link between these models can then be used
to keep these models synchronized.

7.5.5. Graphical syntax

In their paper on the requirements of model transformations [SK03a], Sendall and Koza-
czynski have stated that a graphical syntax for the specification of model transformation
would be a nice thing to have. Indeed, there are a couple of model transformation ap-
proaches, e.g. TGGs (see section 2.2) that do provide a graphical syntax to specify model
transformations. However, although this paper has been referenced in chapter 5 quite a
some times, NMF Transformations currently does not have a graphical syntax.

However, NMF Transformations provides a framework for model transformations that
can be built on. As NTL further simplifies the syntax of how model transformations may
be represented, it would be possible to have an additional graphical syntax that generates
code that either directly interoperates with NMF Transformations or uses NTL for
this purpose.

NMF Transformations Core is quite a low level framework. NTL raises the abstrac-
tion a bit but is still a low level language as it tries to provide the necessary flexibility. In
case that NTL would turn out to be worse than other model transformation languages in
terms of usability, especially because of the introduced verbosity due to choosing C# as
host language, NTL may still serve as a target for code generation. The code generator
is easier to write, as there is not such a big semantical gap that has to filled by the code
generator. It is subject of further research to investigate how a code generator for lan-
guages like ATL, QVT-R or QVT-O could be built. The benefit of such a code generator
would be that these languages get the possibility to operate on plain CLR-objects and thus
make these transformation languages more platform independent. Furthermore, it would
be subject of investigation if the execution speed of such transformations would improve
as these languages are currently interpreted rather than compiled.

7.5.6. Test case generation

It has become a trend in computer science to generate test cases rather than specifying
them separately. Such efforts have been made very recently for TGGs [HLG13, WS13].
However, automatic test case generation also exists for general purpose languages. Specif-
ically for .NET, the Pex framework [TDH08] has been created to automatically generate
test cases for C# code. It is an interesting question whether this test case generation can be
applied to model transformations with NMF Transformations/NTL, also. However,
this is an open research question and out of the scope of this thesis.

7.5.7. Parallelism

The sequential execution speed has stopped to rise for several years now. As a replacement,
computers get the capability of computing an increasing number of tasks at the same
time. This yields the problem that developers need to make the most of this capability
and must distribute the computations to several subtasks, so that they can be computed
in parallel. If these subtasks can work entirely independent from each other, everything
is fine. However, often this is not possible. Instead, these subtasks have dependencies on
each other in that way that one subtask needs another to be completed. The developer
then must synchronize these subtask so that the first one in the example starts only when
the latter is completed.

83

84 7. NMF Transformations

From a step backwards, what NMF Transformations actually does is dividing a com-
plex model transformation task in multiple subtasks, namely computations. Furthermore,
the transformation rules that define how to perform these subtasks have explicit depen-
dencies. This is where the MarkRequire method of the Computation class comes into
place. With this method, subclasses of the Computation class can override a behavior
to be executed whenever a computation depends on another computation due to a de-
pendency. This method can be used to synchronize the subtasks as the computation is
perfectly aware that another computation needs to complete first.

Many parallelism techniques suffer in performance if the developer divides a task into too
many subtasks. As a reason, these subtasks are often directly mapped to threads. These
threads are more lightweight than processes, but having several thousands of them are
usually still too many as they induce additional efforts in the operating systems scheduler.
However, .NET includes an abstraction from operating system threads, namely Tasks.
Tasks are not represented by a thread but instead scheduled to a number of available
threads by the framework, thus preventing the operating system from having a plethora
of different threads. As a consequence, they are much more lightweight and creating
thousands of them does not immediately yield a performance problem. Thus, they are
also appropriate for smaller subtasks. Hence, the technology is a reasonable candidate to
implement parallel execution of model transformations specified with NMF Transfor-
mations. Especially the transform stage can be run in parallel. In this stage, the trace
is usually not modified any more. Furthermore, different computations usually run on
different model elements, so they do not interfere.

However, there are also some problems (as usual when dealing with parallelism). First and
foremost, accessing the model in a concurrent manner does require the model to accept
that, i.e., if there is an access conflict (e.g. a data race) on a collection, the collection must
support this. Thus, the model representation has to be modified for this. The second
question is how to deal with computations that are not represented by tasks or how to
let the developer specify which rules are to be run in parallel. To maintain the semantics,
a parallel version would still have to respect the dependencies set by the transformation
model. The third question is what speedups could be achieved with agnostic parallelism.

7.6. Conclusions

NMF Transformations provides means to write rule-based model transformations with
an internal DSL utilizing .NET languages like C# as host language that transforms models
represented as plain CLR-objects. These transformations have simple abstract syntax that
hides its complexity in its attributes. The Turing complexity intrinsic to model transfor-
mation languages can be specified in normal general purpose code that developers are most
familiar with. On the other hand, the internal DSL on top of NMF Transformations,
NTL, provides means to use high-level abstractions for model transformations that are
missing in plain general purpose languages.

NMF Transformations provides support specifically to transform complex inheritance
hierarchies in a maintainable way. NMF Transformations includes a powerful trace
functionality. However, tracing is only possible in the direction of the model transforma-
tion. More complex pattern matching is supported through the relational extensions of
NTL.

The resulting model transformations can be tested with unit tests, where the transforma-
tion rules can be tested separately.

NTL also provides techniques for transformation developers to extend existing model
transformations very easily and thus customize existing model transformations for changed
situations.

84

8. Impact of NTL language features to
maintainability

This chapter discusses how the language features of NTL can have an impact on the qual-
ity attributes of model transformations. For this purpose, the next sections evaluate the
impacts of NTLto each of the quality attributes presented in section 3.4. It is also inves-
tigated whether it is necessary to further evaluate the impact on these quality attributes
and how such an evaluation could be achieved.

8.1. Understandability

Understandability is a subjective criteria and it is a research field on its own to measure
understandability by means of metrics. Thus, the impact of NTLs design on the under-
standability of the resulting model transformations cannot be determined for sure here as
understandability also largely depends on the person that has to understand the model
transformation, e.g. regarding his background.

Compared to creating model transformations with usual C# code, NTL probably raises
the understandability of the resulting model transformations for most of the developers
as it provides abstractions for model transformations. However, besides the actual model
transformation, developers have to understand these abstractions. It is subject of further
evaluation to investigate how this effort of learning these abstractions relate to ease the
understandability of model transformations created using NTL. The understandability of
NMF Transformations will be evaluated with prospective users of the code generator
that is the outcome of chapter 11.

On the other side, if developers are familiar with the usual abstractions of other model
transformation languages, it will be interesting how these transformation developers un-
derstand the way NTL exposes these abstractions. This is especially interesting as NTL is
an internal language and thus includes syntax artifacts that may hamper the understand-
ability of the model transformation code. This is a goal of the TTC case studies as during
the TTC, multiple experienced transformation developers reviewed the NMF solution and
were further asked to rate the understandability and conciseness of the solutions. Sadly,
the developers were not asked for the understandability directly. But it may be possible
to draw some conclusions for the transformation understandability from this combined
evaluation, also.

85

86 8. Impact of NTL language features to maintainability

8.2. Modifiability

Modifiability is closely related to understandability. However, there is a little difference.
As soon as a developer understands the code of a model transformation, he still has to
understand the concepts of the underlying model transformation language (provided there
is one). Although code can be self-explanatory, it can still be hard to write such code.

8.2.1. Discoverability

This is where discoverability comes into place. Discoverability refers to the tool support
offered to discover a framework or language during development without consulting a
separate documentation. This means that tool support is telling the developers what
features the framework or language can offer. It is closely related to the learnability and
depends on the transformation language and tool. Thus, it is more related to the used
transformation language and tool than to the model transformation itself. However, the
effort that is required to change a model transformation clearly depends on the tool support
and the used language in which the model transformation is specified. Thus, it is useful
to consider the discoverability support of the used language and tools.

In the case of NTL, we use Visual Studio Ultimate as the tool to specify model trans-
formations. The discoverability of an API has been shown to impact the learnability of a
framework massively [RD11, SWM97]. However, we treat it as a part of the support for
modifiability as discoverability support usually appears when a developer starts modifying
the code, in Visual Studio in the form of IntelliSense support.

Being an internal DSL, NTL actually inherits the basic tool support for discoverability
from Visual Studio for free. That is, developer can explore the NTL language by reviewing
the public API that is presented to them via the IntelliSense feature of Visual Studio. As
soon as a developer starts typing, Visual Studio pops up an IntelliSense window to show the
keywords, functions or type names that are available in the context of the cursor position.
The developer can then select the method or type he wishes to access in that IntelliSense
list and Visual Studio automatically shows a tool tip showing the inline documentation
for that method and its signature. When the developer starts to type in the parameters of
a method, Visual Studio knows the parameter index and shows up the documentation for
that parameter. In NTL, every publicly visible method (including protected methods)
has this inline documentation set on the summary (which is the field that is actually
displayed by IntelliSense) and all parameters. If the code is already written, Visual Studio
also shows this inline documentation as soon as the developer moves the mouse over a
member or type reference.

It has been a design goal of NTL to work with this IntelliSense feature as far as possi-
ble. However, the nature of an internal DSL make this infeasible at some points. The
most prominent example of this is how transformations consist of transformation rules.
The transformation developer has to know that he has to create a class that inherits
from ReflectiveTransformation and specify the rules of the transformation as public
nested classes. The IntelliSense feature of Visual Studio does not support the developer
at this point. The supports starts where the developer begins to specify dependencies of
a transformation rule. As these dependencies are specified through method calls in the
RegisterDependencies method, the IntelliSense feature of Visual Studio can support the
transformation developer by providing him with the information of what dependencies can
be specified as it shows what methods are available to call.

However, that same IntelliSense feature does not prevent a transformation developer to
specify a dependency inside the Transform or CreateOutput method that actually does
not have an effect. In this way, NTL is discoverable to some extend, but further tool

86

8.2. Modifiability 87

support would be required to forbid unwanted calls like creating a dependency inside
methods that are not meant for this.

8.2.2. Change impacts

Another important aspect of modifiability is the change impact of various kinds of changes.
As they occur most often, we concentrate on perfective changes. The easiest form of per-
fective changes to a model transformation is when the source metamodel is extended thus
allowing new sorts of input models. How these extensions to the source metamodel could
look like depends on the used meta-metamodel but in many cases, such extensions consist
of newly introduced metaclasses that are linked through inheritance or new references.

In NTL, features such as transformation rule instantiation have been designed to enable
transformation designs that minimize the change impacts of e.g. perfective changes (see
section 7.4). However, it is subject to further validation to validate how these features
compare to similar features of other model transformation languages.

8.2.3. Debugging

Developers often make mistakes and so do transformation developers. Debugging is a
valuable technique to locate these bugs more precisely as the developer can step through
the execution of the model transformation.

As an internal DSL for C#, NTL inherits the debugging support from Visual Studio for
arbitrary C# code. Thus, transformation developers can set breakpoints in the transfor-
mation code. These breakpoints may also rely on custom conditions or may only break on
a certain hit count. Thus, the transformation developer is able to understand the execution
of the model transformation very precisely. As NMF Transformations is open-source,
he can also download the source code and see how the control flow is executed internally
(although he then has to master the complex code of NMF Transformations Core).
As soon as the normal execution stops in a breakpoint, the developer can step through
the code and see what exactly happens. The state of the model transformation and the
transformed models can be reviewed. As Visual Studios watch window allows to spec-
ify arbitrary watches, every detail of the transformation state can be watched during a
breakpoint. The only exception is that the watch window does not allow to use lambda
expressions in watches.

Furthermore, it is possible to change the code while the execution is on a breakpoint, and
continue the execution with the changed code (in Visual Studio 2012, this is only possible
when the transformation is run in 32bit-mode but this restriction will be withdrawn in
Visual Studio 2013).

8.2.4. Testing

For avoid bugs in software artifacts, it is beneficial to use automated tests for any kind
of software artifact. Thus, it is important to test also model transformations. Thus, the
model transformation language must support the creation of unit tests to test the model
transformation.

NTL has a dedicated support for tests as explained in section 7.4.8. However, it is subject
of evaluation how these features can really be used to test the transformation rules of a
model transformation separately and independent of the other transformation rules.

87

88 8. Impact of NTL language features to maintainability

8.2.5. Refactorings

”A system used in a real-world environment must change to avoid becoming progressively
less useful” and ”As a system evolves, its structure tends to become more complex. Extra
resources must be devoted to preserving and simplifying this structure” [Leh74]. What
became famous as Lehman’s laws has a direct impact to the maintenance of model trans-
formations in the direct need of refactoring operations to preserve the quality of model
transformation in terms of its structure. This includes simple operations such as renaming
operations of transformation rules but also more complex refactoring operations that really
change the structure.

Such refactoring operations are typical maintenance tasks. Thus, the tool support of a
transformation language for refactoring operations is important for the maintainability of
model transformations created with that language and tool.

As an internal DSL, NTLinherits the refactoring support for arbitrary C# code from Vi-
sual Studio. This e.g. includes renaming operations. As a transformation rule in NTL is
a public nested class and Visual Studio supports the renaming of classes, transformation
rules can be renamed fully automatically. Further refactoring support is offered by addi-
tional tools such as ReSharper1 that offers a range of further refactoring operations such
as ”extract superclass” [FB99]. Many of these refactoring operations also apply on model
transformations written with NTL. For example, the renaming operation can be applied
to rename transformation rules. Other built-in refactorings such as extracting a method
can be used to increase the modularity of the transformation rules.

However, it is also a subject of further validation how the refactoring support compares
to the refactoring support of other model transformation languages.

8.3. Reusability

It has been discussed in section 7.4.7 how the language features of NTL make it possible
for transformation developers to reuse transformation rules and whole model transforma-
tions across multiple model transformation rules. In this way, NTL indeed allows model
transformations and parts of it to be reused. Furthermore, all actions that are done inside
the Transform and CreateOutput methods can further be moved to dedicated components
that further enhance reusability.

It is not further discussed how the language features of NTL for reusability compare to
related language features of other model transformation languages, at least within this
master thesis, due to limitations in space and time.

8.4. Modularity

Being an internal DSL with C# as its host language, code for a model transformation
can be split across arbitrary many files and assemblies. However, splitting up an assembly
in multiple different assemblies requires to use transformation composition techniques as
a class in C# cannot be split across multiple assemblies. However, C# indeed allows to
split a class definition across file boundaries by using partial classes. With this feature
the C# compiler combines the fragments of a class declaration to a single type that gets
compiled in an assembly. With this technique, it is possible to modularize the specification
of a model transformation and have the different parts locked in the version control system
by different developers. This enables developers to work on a single model transformation
in parallel.

1http://www.jetbrains.com/resharper

88

http://www.jetbrains.com/resharper

8.5. Completeness 89

However, the fact that NTL makes it possible to modularize the specification of a model
transformation, this does not mean that the way the model transformation is split into
parts would always make sense. A meaningful and clear separation of a model transforma-
tion into parts that can be developed independently is a non-trivial task. In many cases, it
would make much more sense to create separate model transformations instead and com-
bine these model transformations using the features from section 7.4.7. Thus, separating
a model transformation in meaningful parts is more like a general open research question
than a concern dedicated to NTL. Thus, the modularity of model transformations is not
evaluated across multiple model transformation technologies.

8.5. Completeness

The completeness of a model transformation is the extend in which a model transformation
conforms to its requirements and therefore first and foremost depends on these require-
ments. The impact of the language design of NTL only consists in the way whether
NTL makes it possible to fulfill these requirements. However, NTL even allows to put
arbitrary general purpose code inside the Transform and CreateOutput methods. Thus,
it is possible to compute everything that is computable with general purpose code. Having
said that, not all requirements can be gracefully supported by NTL. Thus, it is a subject
of further evaluation to find out which types of model transformation can be supported
by NTL.

Note that this statement does not hold for external DSLs so easily. E.g., it is unclear
whether TGGs can fulfill every possible requirements for a model transformation. The
worst thing that could happen to a model transformation developer is that some require-
ments must be fulfilled entirely in general purpose code. Other transformation languages
may require to use general purpose pre- or postprocessing.

8.6. Consistency

The consistency is a quality attribute that the used model transformation language has
the biggest impact on. After all, a model transformation can only be inconsistent when the
model transformation language provides multiple programming styles. On the other hand,
a model transformation can only be consistent if the requirements can be fulfilled with a
relatively small number of concepts that can be used throughout a model transformation.
A variety of different concepts to achieve the same results in different ways may lead to
developers that mix these concepts within their model transformation, making the model
transformation less consistent. Although this variety can be suppressed by code guidelines,
transformation languages that offer very limited but powerful concepts may better prevent
inconsistent model transformations, as they just not offer the choice for developers.

NTL itself takes advantage of this possibility of few but powerful concepts in that way
that its entire functionality is built on the NMF Transformations Core concept of
dependencies, the trace component and patterns. Leaving aside the relational extensions,
all that NTL does is to expose these few concepts in a type-safe way thereby using loads
of convenience methods. Furthermore, NTL also adds some tracing functionality that can
be seen as newly introduced concepts. However, some effects that could be achieved by
using this tracing functionality can also be achieved using the Call and Require methods.
Furthermore, a transformation developer may choose whether to persist the outcome of
a dependency in the persistor of the dependency or to use the trace functionality in the
Transform method. Both programming styles achieve the same results (although executing
persistence logic in the persistor is slightly more performant). Thus, NTL offers a possible
way for inconsistency in the model transformations.

89

90 8. Impact of NTL language features to maintainability

This problem gets worse as soon as relational extensions come into place. As they are to
concisely specify when to call a certain transformation rule, they offer an alternative to the
specification of dependencies. This existence of an alternative solution eventually moves
developers to use this alternative and thus, the model transformation becomes inconsis-
tent. Even if a single model transformation was consistent, many model-driven software
development projects contain more than just one model transformation and inconsistencies
among these model transformations also would yield similar problems as inconsistencies
within a single model transformation.

However, NTL is designed to allow transformation developers to put arbitrary code in
the CreateOutput and Transform methods. Thus, the consistency can easily be ham-
pered when the model transformation uses general purpose code when there had been an
appropriate abstraction provided by NTL. NTL cannot take care of this as this is a re-
sponsibility of the transformation developers. This only thing that can be done to prevent
such situations is to clearly describe, which type of model transformation tasks can be
gracefully supported by NTL. To do this, further evaluation is required to get insights to
the type of model transformations that can be supported with NTL.

Nevertheless, NTL does not prevent developers from writing consistent model transfor-
mations. However, guidelines are necessary to developers when to use which concept. It
is subject of further evaluation how many different concepts would be used for a typical
model transformation task. In fact, some programming guidelines are contained in this
thesis in section 7.4.

8.7. Conciseness

Being an internal DSL, NTL does hamper the conciseness of the resulting model trans-
formations in that way that it expects certain syntactic elements, i.e. has some syntactic
noise. As an example, NTL expects the declaration of dependencies within the Register-
Dependencies method that must be overridden. Thus, when a transformation developer
wants to specify that a transformation rule has a dependency, he has to write down the
complete signature of the RegisterDependencies plus the keyword override to specify
that the contents of this methods should be used to set the dependencies to other trans-
formation rules. In an external DSL, the language could specify a single new keyword
to achieve the same semantics. Thus, repeating the signature of the overridden method
is a clear point of syntactic noise that hampers the conciseness of the resulting model
transformation.

However, this syntactic noise helps developers not used to model transformation too much
to understand what is actually going on. As a consequence, they do not need to wonder
how the magic underneath could be realized, but simply recognize the fact that they need
to override a certain method much similar that they would need a certain keyword in
an external language. Furthermore, the tool support allows it that the developers do
not have to remember the entire signature but simply have to remember the name of
the method they need to override. As soon as they write the override keyword, Visual
Studio actually suggests a list of methods that can be overridden and by using the code
completion support, developers just have to choose the method they wish to override and
press the tab key (also the override is subject to code completion as it usually suffices
to type ”ov” and press the tab key). Furthermore, by repeating the entire signature of
the overridden method, the developer knows exactly which variables he can access and
what type these variables are (provided that he has a principle understanding of the C#
language) whereas in some external languages, it is not always obvious to the developer
which variables he has access to or their type. However, expressing the semantics in a
single concise keyword instead of whole method signature also has advantages for the

90

8.7. Conciseness 91

understandability and thus maintenance as the single keyword attracts more attention to
developers, especially because keywords are mostly highlighted by syntax-highlighting.

Another point where a concise declaration of a model transformation hampers the un-
derstandability of model transformations specifically in NTL is for example the usage of
named parameters. The compiler is actually able to choose the correct overload without
specifying the name of any parameters name. Thus, semantic in the name of a parameter
is completely redundant, resulting in a less concise specification of the model transforma-
tion. However, by writing the name of the parameters, developers can greatly enhance the
understandability of the model transformation. Anyone who reads the code does not have
to look up the meaning of a specific parameter as this meaning is encoded in meaningful
parameter names. However, although C# does support named parameters, many other
languages as Java do not and hence, this statement cannot be generalized for all internal
DSLs.

Thus, if rich tool support as for example provided by Visual Studio is present, a concise
syntax is not as important to maintainability. The verbosity of languages like C# in
terms of how the language is suitable for model transformation can be balanced by the
tool support, especially in terms of writing the code. But it is not only code completion.
Alternative visualizations of the code can also serve to enhance the understandability of a
solution in a similar way as a concise solution does. Tool support may indicate the outline
of a code file, thus cutting the time to navigate to a specific piece of code.

On the other hand, conciseness does not only consist of a concise model transformation
language, but also in the conciseness in which the model transformation can be expressed
using the model transformation language. This means whether the language contains
appropriate abstractions.

91

9. TTC Flowgraphs case study

In this chapter, the Flowgraphs case of the TTC 2013 and a solution using NMF Trans-
formations are presented. First, an overview on the case description is given in section
9.1. Section 9.2 explains the planned validation for this case study with the validation
criteria and how these criteria are evaluated. The next section 9.3 covers the solution of
the Flowgraphs case with NMF Transformations. Next, section 9.4 briefly introduces
the other solutions at the TTC. Section 9.6 then presents the results from the TTC. The
actual evaluation of this case study is performed in section 9.7, before section 9.8 concludes
this chapter.

The solution of the Flowgraphs case using NMF is based on [HGH13a] meanwhile the case
description is based on [Hor13].

9.1. Case Overview

The Flowgraphs case of the TTC [Hor13] is about creating both control flow graph and
data flow graph for a source code written in Java. For this purpose, this Java source
code is turned into a JaMoPP model using the JaMoPP parser [HJSW09]. The JaMoPP
metamodel is an extensive representation of a Java source code. However, to simplify the
transformation a bit, only a subset of this metamodel was promised to be used in the test
models. This subset of 39 metaclasses was presented in the case description. Furthermore,
the models used for testing would only contain a single class with a single method.

In a first initialization step, this extensive representation is simplified by transforming it
into a separate metamodel for flow graphs provided in a GitHub repository1. The part of
this metamodel related to the structure of a method is presented in figure 9.1. Since the
Flowgraphs metamodel only contains a single class for expressions, whereas the JaMoPP
metamodel contains a fine structure of expressions, this initialization task involves an
embedded Model-to-Text transformation that represent a complex expression as simple
text.

The second task consists of deriving the control flow within the Flowgraphs model derived
in the first step. This is an in-place model transformation that populates the cfNext and
cfPrev references of flow instructions (the according part of the Flowgraphs metamodel is
presented in figure 9.2).

1https://github.com/tsdh/ttc-2013-flowgraphs-case

93

https://github.com/tsdh/ttc-2013-flowgraphs-case

94 9. TTC Flowgraphs case study

Figure 9.1.: The metaclasses of the Flowgraph metamodel describing the structure of a
method [Hor13]

The third task is about deriving the data flow within these methods. For this purpose,
the Flowgraphs metamodel contains further references that allow to specify the data flow
in a method (see figure 9.3).

The third task has actually been divided into two subtasks. The first subtask consisted
of extending the initialization to allow to further populate the definitions and usages of
variables. These variables can either be local variables or parameters, where parameters
represented by the Param class is considered to be a special case of a local variable rep-
resented by the Var metaclass. The second subtask is to use these references to compute
the data flow.

In a last task, solutions for the Flowgraphs case are to provide means for experienced Java
developers to check assertions on the created Flowgraph models. Thus, a simple DSL has
to be provided that allows developers to check whether assertions on the resulting flow
graphs hold. These assertions can be either on control flow or data flow. As an example,

Figure 9.2.: The metamodel classes of the Flowgraph metamodel related to control flow
[Hor13]

94

9.2. Planned validation 95

Figure 9.3.: The Flowgraphs metamodel elements related to data flow [Hor13]

the case description suggests a language like the language shown below in listing 9.1.

1 cfNext : ”testMethod () ” −−> ” i n t a = 1 ; ”
2 cfNext : ” i n t a = 1 ; ” −−> ” i n t b = 2 ; ”
3 cfNext : ” i n t b = 2 ; ” −−> ” i n t c = a + b ; ”
4 cfNext : ” i n t c = a + b ; ” −−> ”a = c ; ”
5 cfNext : ”a = c ; ” −−> ”b = a ; ”
6 cfNext : ”b = a ; ” −−> ”c = a / b ; ”
7 cfNext : ”c = a / b ; ” −−> ”b = a − b ; ”
8 cfNext : ”b = a − b ; ” −−> ”return b ∗ c ; ”
9 cfNext : ”re turn b ∗ c ; ” −−> ”Exit ”

10
11 dfNext : ” i n t a = 1 ; ” −−> ” i n t c = a + b ; ”
12 dfNext : ” i n t b = 2 ; ” −−> ” i n t c = a + b ; ”
13 dfNext : ” i n t c = a + b ; ” −−> ”a = c ; ”
14 dfNext : ”a = c ; ” −−> ”b = a ; ”
15 dfNext : ”a = c ; ” −−> ”c = a / b ; ”
16 dfNext : ”a = c ; ” −−> ”b = a − b ; ”
17 dfNext : ”b = a ; ” −−> ”c = a / b ; ”
18 dfNext : ”b = a ; ” −−> ”b = a − b ; ”
19 dfNext : ”c = a / b ; ” −−> ”return b ∗ c ; ”
20 dfNext : ”b = a − b ; ” −−> ”return b ∗ c ; ”

Listing 9.1: The example validation DSL from the case description

The resulting solutions for this case are then to be evaluated by an evaluation scheme.
Solutions are generally evaluated per task. The biggest influence on the evaluation of
the tasks has the factor Completeness & correctness which is weighted with 50%. The
factor Conciseness & understandability is weighted with 30% and the Performance of the
solutions is weighted with 20%. Furthermore, the tasks have different weightings. While
the first task is weighted with 30%, task 2 as presumably the most difficult is rated with
40%. The two subtasks of task 3 and task 4 get weights of 10% each.

9.2. Planned validation

In this section, the validation for this case study is prepared. Section 9.2.1 introduces the
criteria for this validation while section 9.2.2 describes how the validation is done for these
validation goals.

95

96 9. TTC Flowgraphs case study

9.2.1. Validation criteria

The huge advantage of the TTC is that this case study is not only solved by NTL, but
also by several other teams, employing several other transformation languages. As every
team tried its best to compete with the other teams, one can expect that the differences
of the solutions in terms of model transformation quality attributes largely depend on the
used model transformation tool and language rather than the enthusiasm of the teams.
This yields the great possibility to compare NTL as a transformation language with other
state-of-the-art model transformation languages.

However, as maintainability is very difficult to grasp, we concentrate on several specific
points that will be evaluated with this case study. The validation goals for the TTC
Flowgraphs case are as follows:

• Applicability: By solving the Flowgraphs case, it is evaluated that NMF Trans-
formations is an applicable technology to solve a wide range of model transforma-
tion tasks including typical mappings as well as embedded M2T-transformations as
well as in-place refinement transformations.

• Understandability: The evaluation sheet for the solution presentations at the TTC
conference included a question for the combined assessment of understandability and
conciseness. As the conciseness can be evaluated in terms of the LOC metric, con-
clusions may be drawn from this data to the understandability of the NMF solution
and thus to the understandability of model transformations with NMF Transfor-
mations.

• Modifiability: As discussed in section 8.4, the discoverability of the model trans-
formation languages takes a big proportion of the modifiability of a model transfor-
mation. Thus, it is an evaluation goal to compare the support for discoverability of
the different transformation languages.
Furthermore, as the Flowgraphs case contained a restriction on the input meta-
model, it also yields a clear maintenance scenario. In the future, requirements may
change to support other parts of the input metamodel previously not supported by
the model transformation. In fact, some of the later test models of the Flowgraphs
case that were published after the initial solutions had to be handed in actually
contained instances of metaclasses not on the list of used metaclasses provided by
the case description. Such perfective changes in requirements are the most common
type of changed requirements [LS81] and it is therefore crucial for the maintainabil-
ity of a model transformation to support this scenario. Thus, the change impact of
such a perfective change is evaluated in this case study, i.e. how many places of the
model transformation code have to be changed to support new metaclasses from the
JaMoPP metamodel. The most typical changes in this scenario are introductions of
new kinds of statements or expressions.
The debugging, testing and refactoring support are not validated in this case study
as the other case studies better suit these evaluation disciplines.

• Consistency: The consistency of a model transformation is not reviewed in the
open peer reviews. Instead, the consistency of all solutions is evaluated through
discussion. However, the results may be debatable. As discussed in section 8.6,
the consistency of a model transformation defined with NTL greatly depends on
the way transformation developers stick to programming guidelines. Whether or
not developers stick to programming guidelines greatly depends on whether these
guidelines are clearly documented. But as the solution to the Flowgraphs case has
been made by myself that wrote these guidelines, it cannot be evaluated how these
guidelines affect the consistency of the resulting model transformations.

96

9.3. NMF solution 97

• Conciseness: The conciseness can be measured in terms of the Lines of Code metric.
However, there exist different ways to catch up this metric. Thus, the evaluation
must not only rely on the plain results of Lines of Code. Instead, there is further
evaluation required to account for e.g. syntactic noise but also blank lines.

The performance of the solutions is not taken as a validation criteria as it is unimportant
for the maintenance.

9.2.2. Validation procedure

The understandability is the quality attribute that is the hardest to compare as it is
hard to evaluate other than through its perception. However, the TTC evaluation scheme
did not involve questions only on the understandability of the solutions but there were
questions in the open peer reviews and in the TTC conference to ask for the combination
of understandability and conciseness. With the combination of this data and the results
of the Lines of Code (LOC) metric to measure the conciseness, it may be possible to draw
conclusions for the understandability of the solutions. However, these statements on the
understandability must then be used with care.

The discoverability support is analyzed in a discussion. All of the solutions are avail-
able in SHARE([VGM11]) demos online2. These demos have been used to analyze the
discoverability support of these languages.

For the size of the change impacts, we simulate the following scenarios:

• Add support for a new kind of statements.

• Add support for a new kind of expressions.

The validation then evaluates how many places in the transformation must be changed.
Especially, it is desirable that the change impact on existing code is as low as possible.

The consistency is evaluated in a discussion based on the solutions available in SHARE.
The definition of consistency is not exactly clear where to speak of a different program-
ming style. Furthermore, if multiple programming styles are used within a solution, there
may be a continuous pass between them. After all, it is unclear how to exactly define a
programming style. However, one can definitely assume different programming styles, if
multiple programming languages are used. Thus, the consistency is discussed based on
the amount of different programming styles used within a solution.

The conciseness of the solutions is measured in LOC. However, when the LOC metric is
compared across language boundaries, one has to account for the influence of different
coding-styles. As an example, some languages like C# are typically used putting braces
on separate lines. While this dramatically increases LOC, it is not really less concise. A
similar factor is the different impact of aspects of conciseness. While syntactic noise indeed
hampers the conciseness, it may not be as bad as unsuitable abstractions. Thus, a further
discussion is required for the evaluation of conciseness.

9.3. NMF solution

All of the tasks have been tackled. The final solution consists of two separate C# console
projects. The first console application reads a JaMoPP file, transforms it to a Structure
Graph (Task 1 and Task 3.1, see sections 9.3.1 and 9.3.3.1), derives the control flow
(Task 2, see section 9.3.2) and sets the data flow (Task 3.2, see section 9.3.3.2). Each
of the transformations operates in memory, only. After all transformations have been

2http://goo.gl/rgGBJ

97

http://goo.gl/rgGBJ

98 9. TTC Flowgraphs case study

applied, the resulting data flow model is persisted using XMI into an output file specified
by command line parameters. Furthermore, deriving the control flow graph and setting
the data flow can be switched on or off using command line arguments. The second console
application validates the links (see section 9.3.4).

9.3.1. Task 1: Initialization

The inner structure of expressions in the JaMoPP has to be mapped to strings. The
task description suggested to embed a M2T-transformation. However, NMF currently
does not support M2T-transformations and thus, the transformation is implemented as a
M2M-transformation where the target model is strings. However, this has an impact on
the development. Strings are immutable in .NET and thus it cannot be modified during
transformation stage. Hence, we have to do the main work within the CreateOutput-
method. Alternatively, we could have used string buffers.

1 public class Method2Method : TransformationRule <JaMoPP. Members .
ClassMethod , Flowgraph . Method>

2 {
3 public override Flowgraph . Method CreateOutput (JaMoPP. Members .

ClassMethod input , ITransformationContext context)
4 {
5 return new Flowgraph . MethodImplementation () ;
6 }
7
8 public override void Transform (JaMoPP. Members . ClassMethod input ,

Flowgraph . Method output , ITransformationContext context)
9 {

10 output . Txt = input .Name + ”() ” ;
11
12 output . Exit = new Flowgraph . Exit ()
13 {
14 Txt = ”Exit ”
15 } ;
16 }
17
18 public override void Regi s terDependenc ies ()
19 {
20 RequireMany (Rule<Statement2Stmt >() ,
21 s e l e c t o r : method => method . Statements ,
22 p e r s i s t o r : (method , statements) => method . Stmts . AddRange(

statements)) ;
23 }
24 }

Listing 9.2: The transformation rule to transform a method

Let us begin with the code of transforming a method. This code is shown in listing 9.2.
The code snippet specifies a transformation rule that transforms a ClassMethod from
JaMoPP into a Method in the Flowgraphs model. Because the metaclass Method inherits
from two metaclasses, it is generated as an interface, together with a default implemen-
tation. As NMF Transformation cannot instantiate an interface directly, we have to
tell it to create an instance of MethodImplementation instead. In the Transform-method,
the properties of the method are being set. The RegisterDependencies-method states

98

9.3. NMF solution 99

that whenever a method is transformed, all the statements also have to be transformed
(using the Statement2Stmt-rule) and the transformed statements are to be stored in the
transformed method. Other transformation rules instantiate the Statement2Stmt-rule to
handle all possible cases where JaMoPP statements have to be transformed into Stmt
elements.

Combining the expressions to a single string works similar. Much like Statement2Stmt,
a transformation rule Expression2Text is created as base for transforming an expression
into a string. As you can see in listing 9.3, the transformation rule Expression2Text is
empty and does not know anything about the derived classes of Expression. This reflects
that there is no common transformation of a general expression into text. Instead, the
transformation is entirely specific to the specific type of the expression.

1 public class Express ion2Text : AbstractTransformationRule <JaMoPP
. Expres s ions . Express ion , string> { }

Listing 9.3: The abstract rule to create text from expressions

This rule is then instantiated by transformation rules that can transform the derived
classes of Java expressions. An example is the AssignmentExpression. The transforma-
tion rule AssignmentExpression2Text is presented in listing 9.4 as an example of such
transformation rules.

1 public class AssignmentExpression2Text : TransformationRule<
JaMoPP. Expres s ions . AssignmentExpression , string>

2 {
3 public override string CreateOutput
4 (JaMoPP. Expres s ions . AssignmentExpress ion input ,

ITransformationContext context)
5 {
6 var c h i l d = context . Trace . Reso lveIn (Rule<Expression2Text >() ,

input . Child) ;
7 var value = context . Trace . Reso lveIn (Rule<Expression2Text >() ,

input . Value) ;
8 var ass ignment = context . Trace . Reso lveIn (Rule<

AssignmentOperator2Text >() , input . AssignmentOperator) ;
9

10 return c h i l d + assignment + value ;
11 }
12
13 public override void Regi s terDependenc ies ()
14 {
15 MarkInstant iat ingFor (Rule<Expression2Text >()) ;
16
17 Require (Rule<Expression2Text >() , expr => expr . Child) ;
18 Require (Rule<Expression2Text >() , expr => expr . Value) ;
19 Require (Rule<AssignmentOperator2Text >() , expr => expr .

AssignmentOperator) ;
20 }
21 }

Listing 9.4: The transformation of assignment expressions

As a consequence of the instantiation, whenever an Expression is transformed to text
and this expression is an AssignmentExpression, the AssignmentExpression2Text rule

99

100 9. TTC Flowgraphs case study

is called instead to create the output of the Expression2Text-rule. Expression2Text is
still called but here it is empty and only serves as a hub.

With this technique, the transformation can be written without any casting operator or
type check. All the type checks and castings are done by NMF Transformations and
are thus properly secured. The introduction of new metaclasses (and there are a lot more
of them in JaMoPP) only requires a new rule whereas the rest of the transformation may
stay untouched. This yields a small change impact and therefore good maintainability.

The Require method calls define dependencies. In example, whenever an AssignmentEx-

pression is transformed into text, also its Child, Value and AssignmentOperator must
be transformed with the appropriate transformation rules. Usually dependencies can have
persistors but as the transformation targets to strings, these persistors cannot do anything
as strings are immutable. Thus, we need to call the results of these dependencies within
the method that creates the output of the transformation rule, which is CreateOutput.
There, we can use the transformation context instance for tracing.

9.3.2. Task 2: Deriving Control Flow

To derive the control flow graph, semantical information like the first flow instruction
within a statement has to be added to existing model elements. But it is not only data, it
is also the behavior of how to set the control flow that is important for this transformation.
Thus, we first define the behavior that we need from a flow instruction to be able to set the
control flow. This definition is implemented as an interface which is presented in listing
9.5.

1 public interface IContro lFlowInformat ion
2 {
3 FlowInstr F i r s t { get ; }
4 FlowInstr Succe s so r { get ; s e t ; }
5 void SetControlFlow (Stack<Stmt> c a l l H i e r a r c h i e ,

ITransformationContext context) ;
6 }

Listing 9.5: The interface of what is interesting regarding control flow

At first, we need the first flow instruction since the entrance in a statement (First).
However, in some cases like empty blocks, this first flow instruction is not part of the
current statement. Therefore, we need to tell what the next flow instruction after the
current statement is (Successor). Finally, the procedure of how to set the control flow
for a statement also depends on a statement. A simple statement only sets the CfNext
reference to the first inner flow instruction of the successor statement, whereas a jump
statement sets a CfNext reference to the target jump label. However, some statements like
break and continue cannot set their control flow predecessor without context. I.e., the
predecessor of a continue statement is the test expression of the innermost loop that the
continue is contained in. Additionally, the method also has the transformation context as
parameter for tracing purposes.

NMF Transformations does not draw a difference between objects that are part of the
model and objects that are just helpers. Thus, we can just use an abstract transformation
rule that returns an instance of the above interface for any statement. The nature of
Successor and First are quite different. Whereas First can only be derived in a bottom-
up manner, Successor must be set in top-down fashion. Thus, we use the above interface
to first set the Successor. As soon as this is done, the First reference is available and
we can derive the control flow. Unfortunately, an interface declaration is not expressive

100

9.3. NMF solution 101

enough to specify such a protocol. As an example, this procedure is demonstrated by the
SetControlFlow implementation for Blocks in listing 9.6.

1 public void SetControlFlow (Stack<Stmt> c a l l H i e r a r c h i e ,
ITransformationContext context)

2 {
3 // Set Successors
4 Chi ldren [Chi ldren . Count−1] . Succe s so r = Succes so r ;
5 for (int i = Chi ldren . Count − 2 ; i >= 0 ; i−−)
6 {
7 Chi ldren [i] . Succe s so r = Chi ldren [i + 1] . F i r s t ;
8 }
9

10 // Set C o n t r i o l Flow
11 c a l l H i e r a r c h i e . Push (Parent) ;
12 for (int i = 0 ; i < Chi ldren . Count ; i++)
13 {
14 Chi ldren [i] . SetControlFlow (c a l l H i e r a r c h i e , context) ;
15 }
16 c a l l H i e r a r c h i e . Pop () ;
17 }

Listing 9.6: SetControlFlow-method for Blocks

Finally, the control flow of the method is set by simply calling the SetControlFlow-method
of the methods control flow interface implementation and thereby utilizing the helper model
induced by the that interface. At the method level, the method also knows the successor
of the statements contained in the method which is the methods Exit element. The code
is demonstrated in listing 9.7. However, most of the work is done in the SetControlFlow

of the individual interface implementations for each of the statement types.

1 public class DeriveMethodControlInfo : InPlaceTransformationRule<
Method>

2 {
3 public override void Regi s terDependenc ies ()
4 {
5 Require (Rule<Block2CFInfo >()) ;
6 }
7
8 public override void Transform (Method input ,

ITransformationContext context)
9 {

10 var c f I n f o = context . Trace . Reso lveIn
11 (Rule<Block2CFInfo >() , input) ;
12
13 c f I n f o . Succe s so r = input . Exit ;
14 c f I n f o . SetControlFlow (new Stack<Stmt>() , context) ;
15 input . CfNext . Add(c f I n f o . F i r s t) ;
16 }
17 }

Listing 9.7: Deriving the control flow for a method

Again, we only used the transformation rule instantiation for pattern matching. As a
consequence, deriving the control flow for any additional metaclass is just as easy as

101

102 9. TTC Flowgraphs case study

defining a new transformation rule that instantiates one of the existing transformation
rules.

9.3.3. Task 3: Deriving Data Flow

As the task description of the third task is divided into two subtasks, so is the solution that
are presented in the subsequent paragraphs of this section. The extended initialization is
described in section 9.3.3.1 while the data flow generation is presented in section 9.3.3.2.

9.3.3.1. Task 3.1: Extended Initialization

The deduction of the variable declarations and usage changes the whole part of the trans-
formation that deals with expressions. From now on, it is not only the string expression
that is interesting for an expression. There is also the information which variables are
used. Although this might seem easy to do, there are some issues with that. The problem
is that the information is split up to several parts across the model. An IdentifierRef-

erenceExpression knows which variable is accessed but it does not know whether it is
written or read.

As this task is very similar to task 2, the solution is also quite similar. Again, we first
define an interface of what is interesting for us from an Expression. The resulting inter-
face is presented in listing 9.8. The Expression property is just to return the expression
string from the Expression instance. The enumeration UsedVariables tells the used vari-
ables in the Expression and SetDefs sets the defined variables by that Expression. The
LastVariable reference tells the last variable within an expression.

1 public interface IExpress ionDFInfo
2 {
3 string Express ion { get ; }
4 IEnumerable<Flowgraph . Var> UsedVariables { get ; }
5 Flowgraph . Var LastVar iab le { get ; }
6 void SetDefs (Flowgraph . FlowInstr parentFlow) ;
7 }

Listing 9.8: The interesting attributes for an Expression

In this transformation, however, the information on the order of read and write accesses is
lost. The metamodel of the FlowGraph just does not provide this detail in this precision.
In an expression like

i = i++ + i++;

the variable i is read two times and is defined three times. However, the order of read and
write accesses is lost. However, we can hope that these cases rarely occur.

We use a LastVariable property to get the variable that has been accessed in the most
recent expression. This is necessary to prevent an expression like

i + 2 = i;

to produce definition of the variable i. We could also claim that expressions like these are
not allowed. However, if we imagine a as a more complex object like an array, we still
want to know that the statement

a[i] = 0;

102

9.3. NMF solution 103

defines the variable a (to be more precisely, it defines the contents of the array a) but
uses the variable i. Thus, we cannot, in general, just use the UsedVariables property
of the left side of an expression to get the variables that are defined by this assignment
statement. For this purpose, the LastVariable property is used that returns the variable
that is a candidate for a definition. The variables within UsedVariables of an assignment
statements left side are read, except for the last variable that is written to.

9.3.3.2. Task 3.2: Deriving Data Flow

Data flow is usually derived from the control flow through an iterative procedure. However,
in NMF Transformations, it has been a principle design decision that transformation
rules may only be executed once per transformation context and input. Thus, NMF
Transformations is not well suited for this in-place transformation and thus, we solve
this transformation task in general purpose code. In the first versions (including the version
handed in to the TTC, the algorithm simply went through all flow statements and looked
for the defined variables. For each flow instruction that defines a variable, it walked all
possible ways through the control flow graph and set DfNext edges whenever it found some
expression using that variable until this variable is redefined.

However, it turned out that it is more efficient to perform this task the other way around.
For every flow instruction within the method, we iterate through the used variables and
look for all possible definers of that variable by following the control flow backwards. As
NMF Transformations operates on POCOs (”Plain Old C# Objects”), integrating this
general purpose code in the transformation is just as easy as calling the algorithm. There
is no conversion that has to be done.

1 public stat ic void SetDataFlow (Method method)
2 {
3 var i n s t r u c t i o n s = method . Closure<FlowInstr >(m => m. CfNext) ;
4 foreach (var i n s t r in i n s t r u c t i o n s)
5 {
6 foreach (var use in i n s t r . Use)
7 {
8 S e t D e f i n i t i o n s (i n s t r , i n s t r , use , new HashSet<FlowInstr >()) ;
9 }

10 }
11 }

Listing 9.9: The algorithm to set the control flow

The implementation is presented in listing 9.9. The algorithm makes use of the Closure

operation offered by NMF Utilities. This collects all expressions that are reachable
through CfNext references. For any used variable of any expression, we then set the
possible definers. The code for this operation is shown in listing 9.10.

1 private stat ic void S e t D e f i n i t i o n s (FlowInstr current , FlowInstr
root , Var var i ab l e , HashSet<FlowInstr> v i s i t e d)

2 {
3 foreach (var prev in cur rent . CfPrev)
4 {
5 i f (! v i s i t e d . Contains (prev))
6 {
7 v i s i t e d . Add(prev) ;
8
9 i f (prev . Def . Contains (v a r i a b l e))

103

104 9. TTC Flowgraphs case study

10 {
11 prev . DfNext . Add(root) ;
12 }
13 else
14 {
15 S e t D e f i n i t i o n s (prev , root , va r i ab l e , v i s i t e d) ;
16 }
17 }
18 }
19 }

Listing 9.10: The initialization algorithm for deriving the data flow

The SetDefinitions function is recursive. It goes back the control flow. If the visisted
flow instruction is not already marked visited, the algorithm marks this instruction visited.
If the instruction defines the variable that is looked for, the function terminates. Otherwise,
it recursively looks backwards in the control flow graph. The hash set is used to remember
which flow instructions already have been visited in order to prevent endless loops.

9.3.4. Task 4: Validiation

As the proposed query language is very simple, it suffices to solve the problem with regular
expressions. If the language became more complex, there would be some parser generators
such as Irony3 that can parse strings based on EBNF grammars. But as mentioned, in
this case regular expressions suffice. To parse a command, we use the following regular
expression:

(?<command>(cfNext|cfPrev|dfNext)):\s*

"(?<source>[^"]*)"\s*-->\s*"(?<target>[^"]*)"(;)?

Note that this regular expression uses the syntax of .NET regular expressions. This means
it introduces character classes like whitespaces (\s) and catches parts of the expression
in groups for later reference, as in (?<groupname>). The validation application now just
reads a target model and creates an internal hashtable with all the instructions that are
contained in the model. Any validation string is then parsed with the above pattern and
the application simply checks whether the asserted condition holds.

9.4. Other solutions

This section briefly introduces the other solutions to the Flowgraphs case at the TTC.
However, this introduction only covers the tasks 1, 2 and 3.1 as the tasks 3.2 and 4 are
out of the scope of this thesis. All solution descriptions will be published in brief form
in the formal post-proceedings of the TTC. More detailed descriptions are available on
the TTC homepage under http://planet-sl.org/community/index.php?option=com_

community&view=groups&task=viewgroup&groupid=24. Demos of the solutions can be
found on SHARE4.

For the comparison to the NMF solution, only those code snippets were used that also ap-
peared in the solution papers, as these code snippets are typically selected to demonstrate
the strengths of these approaches.

3http://irony.codeplex.com/
4http://goo.gl/rgGBJ

104

http://planet-sl.org/community/index.php?option=com_community&view=groups&task=viewgroup&groupid=24
http://planet-sl.org/community/index.php?option=com_community&view=groups&task=viewgroup&groupid=24
http://irony.codeplex.com/
http://goo.gl/rgGBJ

9.4. Other solutions 105

9.4.1. FunnyQT

Like NTL, FunnyQT5 is a shallow internal DSL for model transformation. However,
unlike NTL, FunnyQT uses the host language Clojure which is a dialect of Lisp that
compiles to Java byte-code. The flexible syntax of Clojure yields a very high conciseness
of the FunnyQT solution. The FunnyQT solution is quite fast in terms of execution
speed. As a reason, being a Lisp dialect, FunnyQT can make use of semantic macros
that get expanded at compile time and thus, the transformation gets optimized when the
transformation is compiled to Java bytecode. Furthermore, FunnyQT exposes several
language features of Clojure that are optimized during compilation.

However, from a maintainability perspective, FunnyQT yields some problems. As also
the review of Sanchez6 stated, FunnyQT lacks of an abstraction layer that makes it useful
to non-Clojure programmers. As maintainability depends on the users background, this
is harmful to the maintainability. Furthermore, Clojure is not statically typed which has
huge impacts on the IDE regarding productivity features like code completion.

1 (ˆ : top method2method [m]
2 : from ’ members . ClassMethod
3 : when−let [mstmts (seq (eget m : statements))]
4 : to [fgm ’ f lowgraph . Method , ex ’ f lowgraph . Exit]
5 (e s e t ! fgm : txt (s tmt2st r m))
6 (e s e t ! ex : txt ”Exit ”)
7 (e s e t ! fgm : stmts (map stmt2item mstmts))
8 (e s e t ! fgm : e x i t ex)
9 (e s e t ! fgm : de f (map param2param (eget m : parameters))))

Listing 9.11: Transforming a method in FunnyQT

Listing 9.11 shows how a method is transformed in FunnyQT. The syntactic noise is
reduced to a minimum so that the code for a method transformation fits into just 9 lines
of code. However, this listing also shows some vulnerabilities to the maintainability of
the resulting transformation. Although a method is also a block, the semantics that the
statements inside a block must be transformed by transforming the statements inside the
block is repeated. In the small scenario of the Flowgraphs case, this may not be a problem
but such duplication of code is always unwanted as it may cause maintenance problems as
soon as the transformation grows large.

Furthermore, although the code is very concise, it is not really understandable for devel-
opers not used to programming with Lisp dialects. Without an understanding of what
functions like eset! or even just the colon operator mean, it is hard to understand the
code. Further, it is an open question, how many developers are actually able to write such
code.

1 (stmt2item [stmt]
2 : g e n e r a l i z e s [local−var−stmt2simple−stmt c o n d i t i o n 2 i f

b lock2b lock
3 re tu rn2re turn whi le− loop2loop break2break cont inue2cont inue
4 l a b e l 2 l a b e l stmt2simple−stmt])

Listing 9.12: The stmt2item rule in FunnyQT

These maintenance problems on the transformation of inheritance hierarchies continue if
we look at the definition of the stmt2item rule in FunnyQT, see listing 9.12. Same as a

5https://github.com/jgralab/funnyqt
6Available under http://goo.gl/vdgL7

105

https://github.com/jgralab/funnyqt
http://goo.gl/vdgL7

106 9. TTC Flowgraphs case study

disjunct mapping in QVT-O, the transformation rule for the base class has to be aware of
the all derived classes that need to be transformed. This yields the same maintainability
issues as described in section 7.4.5.

9.4.2. Epsilon

Rather than a single transformation language, the Epsilon7 solution used multiple lan-
guages, the Epsilon Objects Language (EOL) and the Epsilon Transformations
Language (ETL). As EOL is used by multiple other languages inside the Epsilon lan-
guage family, this has the advantage that code specified in EOL can easily be reused in
other transformations.

Listing 9.13 demonstrates how the model transformation looks like by showing the trans-
formation of conditionals. The listing shows the conciseness in which the model transfor-
mation can be specified.

1 rule Cond i t i on2 I f
2 transform s : JaMoPP! statements : : Condit ion
3 to t : FlowGraph ! I f
4 extends JavaElement2Item {
5
6 t . expr = s . cond i t i on . equ iva l en t () ;
7 t . then = s . statement . equ iva l en t () ;
8 i f (s . e l s eStatement . i sDe f i n ed ()) {
9 t . ’ e l s e ’ = s . e l s eStatement . equ iva l en t () ;

10 }
11 }

Listing 9.13: The rules to transform a condition in ETL

The embedded M2T-transformation as well as the control flow generation are solved by
applying the visitor pattern in the essence described in [PJ98] and in section 6.3.

1 operation Loca lVar iab l e t oS t r i ng () {
2 var type = s e l f . typeReference . t oS t r i ng () ;
3 var i n i t i a l V a l u e = s e l f . i n i t i a l V a l u e . t o S t r i ng () ;
4 return type + ” ” + s e l f . name + ” = ” + i n i t i a l V a l u e ;
5 }

Listing 9.14: The M2T-transformation to transform a local variable to string in EOL

However, what the Epsilon solution basically does to achieve the control flow generation
is to use EOL as an ordinary general purpose language. The only feature that the whole
solution is really based on is late binding, i.e. to choose the correct overload of a method
depending on an objects runtime type rather than by its static type. However, EOL is
by far not the only language that supports late binding. As a consequence, the Epsilon
solution can be more or less directly translated into C# code without using any framework
(except for the model representation) that is just as concise as the Epsilon solution.
This solution is presented in section 9.5. This is remarkable as the Epsilon solution
won an award for the most concise solution. This leads to the question whether in-place
transformations as in task 2 are really an appropriate task for model transformation tasks.

Using these late binding mechanisms does also have a downside. Although the different
implementations of the toString operation are used together, this dependency only ex-
ists implicit. As a result, as soon as transformation developers type the name toString

7http://www.eclipse.org/epsilon

106

http://www.eclipse.org/epsilon

9.4. Other solutions 107

wrongly, an implementation of the method may be ignored to set up the text. The trans-
formation tool cannot support the transformation developer in this as the tool cannot
know that a toSting operation should belong to the toString operations group but is
just spelled incorrectly. This is specifically harmful in refactoring scenarios when the name
of an operation is to be changed.

For the concise specification of a solution to the Flowgraphs case, the Epsilon solution
has been awarded for being the best overall solution of the Flowgraphs case.

9.4.3. eMoflon

The eMoflon solution is a solution based on advanced Triple Graph Grammars (see
section 2.2). Advanced means that eMoflon is able to incorporate extensions that act
as value converters. This allows transformation developers to match attributes of different
model elements in a more flexible way than matching on identity or equality. An important
example of this is adding a constant suffix to a string value which is for example required
in the transformation of methods as the name of a method in the Flowgraphs model is
supposed to consist of the original methods name followed with a pair of parenthesis. Such
value converters can be parametrized to allow reusability. E.g. adding a suffix to a string
is a common task that might be required in multiple model transformations. In fact,
eMoflon incorporates a library of such value converters.

Being based on TGGs, eMoflon offers a bidirectional transformation. However, the so-
lution only implements support for a subset of model elements (while, if/else, break) in a
proof-of-concept manner. Although bidirectionality support has not been a core require-
ment in the case description, it is indeed a feature that is nice to have. The solution paper
especially highlights that such a bidirectional model transformation enhances support for
refactorings, i.e. refactorings made on the Flowgraphs model could be translated back to
the source Java model. As the eMoflon solution extended the Flowgraphs metamodel
with a CompileUnit class, the solution can persist these changes back to the Java files.
Further to the changed input metamodel, the solution also uses a different parser based
on ANTLR.

Figure 9.4 shows an example how these TGG rules look like in Enterprise Architect which
has been used by the authors of the solution. The black elements at the top represent
the axiom of this rule, i.e. the elements that determine where the rule is applicable.
The green boxes below represent the elements that participate in a rule application. The
rectangles represent model elements whereas the hexagonals represent correspondings. The
rule basically specifies that for any AssignmentNode that is a child of StatementsNode of
the axiom, a corresponding SimpleStmt element (referred to as declStatement) should be
created. The dashed lines specify these extensions to put constraints on these elements.

Such transformation rules are not self-explanatory. However, as soon as one gets used to
these specifications, they are quite understandable and somehow quite concise.

9.4.4. ATLAS Transformation Language (ATL)

ATL is an external transformation language that represent model transformations as sets
of transformation rules. These transformation rules can have multiple input and output
elements and specify the attributes of the resulting model elements via OCL expressions.
Compared to all other transformation tools and languages, ATL is the oldest one (from
2006). It has been designed as a hybrid language (being both imperative and declarative)
to combine the advantages of both QVT-O and QVT-R.

As an example, listing 9.15 shows the transformation rule contained in the ATL solution
to transform WhileLoop elements.

107

108 9. TTC Flowgraphs case study

Figure 9.4.: The TGG rule for an assignment in eMoflon

1 rule WhileLoop2Loop {
2 from
3 s : Java ! WhileLoop
4 to
5 t : GRP! Loop (
6 expr <− s . cond i t ion ,
7 body <− s . statement ,
8 txt <− s . getText
9)

10 }

Listing 9.15: A transformation rule to transform a WhileLoop element in ATL

The language automatically infers that the expr reference has to be obtained from the
trace functionality by tracing the condition of the input conditional element. As the
textual representation of an input model is not directly represented in the input model,
this functionality is implemented using helpers. Listing 9.16 shows as example of such a
helper method.

1 helper context JAVA! AssignmentExpress ion def : getText : S t r ing =
2 s e l f . c h i l d . getText + ’ ’ + s e l f . ass ignmentOperator . getText + ’ ’
3 + s e l f . va lue . getText ;

Listing 9.16: The helper to obtain the text of an assignment expression in ATL

These helpers in ATL may only consist of OCL statements, which is a side-effect free query
language. To apply these results of these queries, the ATL solution uses a transformation
run in refinement mode. This transformation consists of transformation rules for each
metaclass that does nothing but calling a helper method and assign the results. This is
required to enable ATL to update references as the helpers itself must have no side-effects.

108

9.5. General purpose solution 109

9.4.5. Eclectic

Similar to Epsilon, also Eclectic uses a whole family of model transformation languages.
The initialization can be done using the concept of mappings. Listing 9.17 demonstrates
how such mappings look like.

1 from s r c : in ! WhileLoop
2 to tg t : out ! Loop
3 tg t . expr < s r c . cond i t i on
4 tg t . body < s r c . statement
5 tg t . txt = t a s k 1 a t t r i b u t i o n ! t ex t [s r c]
6 end

Listing 9.17: Transforming a WhileLoop element in Eclectic

As the txt reference of expressions needs to generated in a bottom-up manner, Eclectic
declares an attribution on the transformation rules where the text attribute is marked as
a synthesized attribute. For this, Eclectic has an attribute modifier keyword syn. The
attribution further specifies the rules how to compute the attributes. Listing 9.18 shows
an example how this looks like for a LocalVariableExpression.

1 rule in ! Loca lVar iableStatement
2 i n i t t ex t = text [s e l f . v a r i a b l e . i n i t i a l V a l u e]
3 type r e f = text [s e l f . v a r i a b l e . typeReference]
4 t ext [s e l f] <− type r e f . concat (’ ’) . concat (
5 s e l f . v a r i a b l e . name . concat (’ = ’) .
6 concat (i n i t t ex t)) . concat (’ ; ’)
7 end

Listing 9.18: Retrieving the attribution of a local variable statement in Eclectic

9.5. General purpose solution

The Flowgraphs case seems like a typical use case for model transformations. However,
to be more confident in the evaluation of this case study, the transformation task has also
been implemented using general purpose code without using any framework (except for
serialization and model representation). To do this, the model representation of NMF was
reused and the transformation tasks of the Flowgraphs case have been implemented in
plain C#. The solution has been inspired by the Epsilon solution of the Flowgraphs
case and was only implemented after the TTC conference. As a reason, Epsilon takes
huge advantage of its late binding feature. However, late binding is also available in C#.
Thus, the model transformation can be implemented much in the same way as Epsilon
is. Furthermore, as the JaMoPP parser constructs a model that is almost a tree, cyclic
references can almost never occur. As a consequence, checking whether an element is
already transformed is not necessary in this case.

To get an impression how the transformation case can be solved via general purpose code
without the support of any framework, the same code snippets as in the Epsilon solution
are reflected here to better compare how these solutions differ in conciseness. Thus, listing
9.19 shows the method to transform a conditional statement.

109

110 9. TTC Flowgraphs case study

1 public Flowgraph . I f TransformStatement (JaMoPP. Statements .
Condit ion cond i t i on)

2 {
3 var i fStmt = new Flowgraph . I f () ;
4 i fStmt . Txt = ” i f ” ;
5 i fStmt . Expr = TransformExpress ion (cond i t i on . Condit ion) ;
6 i fStmt . Then = TransformStatement ((dynamic) cond i t i on . Statement) ;
7 i f (cond i t i on . ElseStatement != null)
8 {
9 i fStmt . Else = TransformStatement ((dynamic) cond i t i on .

ElseStatement) ;
10 }
11 return i fStmt ;
12 }

Listing 9.19: The method to transform a condition statement in plain C#

The code actually looks pretty similar to the code of the Epsilon solution. As a difference,
method calls in C# are resolved by static typing by default and thus, developers have to
make it explicit if they wish to use late binding for a method. However, other .NET
languages like Visual Basic.NET offer the ability to switch the default to late binding.

But unlike ETL, these plain methods obviously do not check whether an element is al-
ready transformed, as no trace is maintained. Thus, developers face the issues discussed
in sections 6.1 and 6.2. However, the initialization only requires a trace access for the
creation of jump labels and variables. The rest of the input models conforms to a tree
structure. However, as discussed in section 6.1/6.2, future changes of e.g. usage scenarios
may introduce new cycles and therefore have the transformation behave unexpected.

9.6. Results on the TTC

From the open peer reviews, the NMF solution only achieved a fourth place in the ranking
of the overall evaluation. However, as these reviews have been peer reviews, not everybody
was reviewing everybody else, making the results less reliable. The fact that NMF has got
the lowest evaluation confidence may serve to support that the reviewers have not been sure
how to rate NMF Transformations. In the evaluation of the case, an important criteria
has been conciseness. As the syntax of C# is sometimes quite verbose, the NMF solution
actually achieved the worst conciseness that was entirely rated by the Lines of Code metric.
On the other hand, the biggest advantage of NMF Transformations, its tool support,
has not been asked for and has also not been focussed on in the solution paper.

The plain evaluation data from the open peer reviews can be reviewed online at http:

//goo.gl/jAo4T. However, they are also contained in the appendix in section D.2 as it is
unclear how long the link will be valid.

The overall evaluation (see figure 9.5) is not beneficial for the NMF solution. As a reason,
most reviewers are developers of external transformation languages. Most of them have
a focus on the transformations conciseness. However, this is the biggest advantage of
external DSLs. As they invented external DSLs, the improved conciseness seems to have a
high priority for them. However, as tool support is present, conciseness gets less valuable
(as discussed in section 8.7).

Consequently, the attendees of the TTC conference found NMF Transformations also
not so useful. The rating of the usefulness of the tool is quite interesting. Visual Studio,

110

http://goo.gl/jAo4T
http://goo.gl/jAo4T

9.6. Results on the TTC 111

Figure 9.5.: The overall evaluation of the Flowgraphs case

Figure 9.6.: The usefulness results of the Flowgraphs case

111

112 9. TTC Flowgraphs case study

the tool for NMF Transformations but also for general C# development, has been
rated as the most useless tool, even more useless than the simple editors with only syntax
highlighting support that is offered by other transformation languages. As Visual Studio
has proven its usefulness in practice, this may highlight the fact that the background of
the TTC attendees is so much different to the target audience of NMF Transforma-
tions (C# developers) that value Visual Studio. This is also confirmed by the fact that
NMF Transformations had the least familiarity with the technology.

The results data from the TTC is presented in more detail in the appendix, see section
D.2.

9.7. Validation

In this section, the NMF solution of the Flowgraphs case is validated for to the validation
criteria defined in section 9.2.1 in comparison to the other solutions. As few of these
validation criteria were covered in the TTC, most of the validation is done through a
discussion here. The following subsections include the validation discussion for each of the
validation criteria defined in section 9.2.1.

As the understandability discussion is based on the conciseness evaluation, it is moved to
the end of this section.

9.7.1. Modifiability

9.7.1.1. Discoverability

The discoverability of NTL already has been discussed in section 8.2. Thus, we concentrate
on the discoverability support of the other tools and languages here.

FunnyQT

Much like NTL, FunnyQT is a shallow internal DSL. Its author Tassilo Horn even speaks
of a framework for model transformation with Clojure rather than a language on its own.
Thus, FunnyQT also inherits the tool support for discoverability from the tool. There
are a row of tools supporting development with Clojure and the community does not seem
to have found a consensus on it. Here, the Eclipse plug-in Counterclockwise8 (CCW) is
taken into consideration. CCW is a more sophisticated IDE for Clojure recommended by
the FunnyQT author9. This Eclipse plug-in gives a code-completion feature in that way
that it knows all functions and has the potential to show inline documentation. However,
such inline documentation is not available for FunnyQT. Furthermore, the CCW editor
does not give a hint how to use the offered functionality, the developer can only made
aware of their existence.

The reason the discoverability support of FunnyQT is so much worse than the discov-
erability support for C# is that C# is a statically typed language. Thus, the compiler
knows the methods or members available for a variable based on its static type. As a re-
sult, tool support like the IntelliSense feature in Visual Studio can access this information
and provide the developer with the members that are valid on this specific type. This
greatly improves the discoverability for the transformation developer.

8http://updatesite.ccw-ide.org/stable/
9https://github.com/jgralab/funnyqt

112

http://updatesite.ccw-ide.org/stable/
https://github.com/jgralab/funnyqt

9.7. Validation 113

Epsilon

Epsilon is a family of external DSLs, i.e. the model transformation to solve the Flow-
graphs case consisted of multiple languages. In external DSLs, the features offered by the
language are usually encoded in the language. In this way, the language constructs make
their meaning mostly obvious to the developers. However, the developer must know these
language constructs.

The Epsilon plug-in for Eclipse has little support to let the developers discover the lan-
guage constructs of ETL. The editor provides a couple of snippets that can be discovered
by the control+space shortcut. The most important snippet for ETL, the snippet for a
model transformation rule, is shown in listing 9.20.

1 rule rulename
2 transform s : sourcemodel ! sourcetype
3 to t : targetmodel ! t a rge t type {
4
5 }

Listing 9.20: A snippet for a transformation rule in Epsilon

There is no documentation available what these snippets represent. The developer must
consult documentation to see that the snippet is actually incomplete as it hides that one
may also define guards or extend other transformation rules, for instance. Furthermore, if
a transformation developer has already started creating a transformation rule, the Eclipse
plug-in does not support him in the way that it shows the possible keywords that could
apply at a certain position in code. As an example, the Eclipse plug-in does not support
developers in that the rule name may be followed by a transform keyword. For external
MTLs, Epsilon is one of the more important ones and exists after all for five years now.
The community behind Epsilon is relatively big, but still none of such tool support
has been accomplished. This shows the principle problem of external DSLs that it is
appearently too much effort to support an external DSL with rich tool support.

The only thing that is offered by the Eclipse plug-in besides these snippets is that when
pressing control+space, the IDE lists all available primitive types and all properties that
were used anywhere in the transformation. However, the latter feature does not help for
discoverability as developers first have to know that a property exists in order to use it.

The imperative EOL language is supported in the same way. Snippets exist that show the
definition of an operation or function, but no further tool support is offered for discover-
ability.

eMoflon

As eMoflon follows an entirely different approach to model transformation, it is hard
to compare it to the other model transformation languages. As a TGG, eMoflon has
a graphical syntax. This graphical syntax prevents some features that are common to
textual codes. However, with the graphical syntax, eMoflon can make use of the dif-
ferent properties to allow developers to discover how they can modify an existing model
transformation. The Enterprise Architect allows to add a rule in the context menu of the
rules element in the project explorer. In this way, transformation developers can discover
the functionality of eMoflon.

There is only the Enterprise Architect Lite installed on SHARE, it has been impossible
to review how to modify the solution as every modification functionality is disabled in
the Lite version. However, as a developer not experienced with eMoflon, it is indeed
possible to find the functionality as it is discoverable through wizards of the graphical user
interface.

113

114 9. TTC Flowgraphs case study

ATL

The discoverability support of ATL is very similar to the support of Epsilon. The tool
(again the Eclipse plug-in is considered) only offers support in creating snippets. It does
not offer the developer with contextual support with respect to the language constructs.
However, similar to Epsilon the tool supports the discoverability of the input and target
metamodels.

1 r u l e name {
2 from
3 input name : input e lement
4 to
5 output name : output e lement (
6
7)
8 }

Also for ATL, no context-sensitive discoverability support is provided.

Eclectic

Eclectic could not be reviewed in terms of discoverability as the SHARE demo was not
accessible and no further documentation exist how to set up the IDE for Eclectic. However,
as Eclectic is an external language developed only by Jesús Sánchez Cuadrado and does
not inherit rich tool support from any host language, the support for Eclectic is unlikely
to be better than for ATL or Epsilon that exist for years now and are maintained by a
team consisting of more than a single developer (although much less developers than e.g.
in the teams evolving mainstream languages such as Java or C#).

Results

In the model transformation languages with textual representation, NTL is much more
discoverable than any other model transformation language as it inherits the tool support
provided by Visual Studio. In FunnyQT, the existing tool support of the IDE is not
used entirely as no inline documentation is provided for CCW. For external languages,
implementing the necessary tool support for discoverability seems to be a barrier that is
yet too big to manage. The only transformation tool that has a discoverability support that
may challenge the support in NTL is eMoflon. However, as these languages differ greatly
in their nature, it is hard to compare them with respect to discoverability. To discover
eMoflon, developers have to understand what the diagrams as in figure 9.4 mean. On the
other hand, the tool support can exhibit the full functionality. But the fact that a feature is
available in a graphical user interface (GUI) does not necessarily mean that developer will
find it. User studies have to be performed to evaluate whether the functionality in a GUI
is found by the users of that application. In contrast, the discoverability support of textual
languages like NTL can be offered by few tools. In case of NTL, the discoverability support
of Visual Studio is mainly offered by the IntelliSense feature. Thus, further validation
would be necessary to better compare NTL and eMoflon in terms of discoverability.
However, such in-depth comparison is not worth the effort as the GUI of tools often
change.

Put in a nutshell, it can be said that NTL and eMoflon have the best tool support for
discoverability of all the MTLs that participated in the Flowgraphs case.

114

9.7. Validation 115

9.7.1.2. Change Impact

NMF

The transformation instantiation feature allows NTL to easily extend the model trans-
formation for later introduction of additional metaclasses. However, NTL currently only
allows a transformation rule to instantiate only one other transformation rule. As a re-
sult, three additional transformation rules had to be created for two additionally used
metaclasses:

1. A rule to transform unary expressions to temporary transformation objects

2. A rule to transform unary operators to strings

3. A rule to transform a Subtraction element when used as a unary operator

Furthermore, no existing code had to be modified to support unary expressions. However,
the NTL solution requires an explicit hub for UnaryExpressions. Furthermore, because
of the restriction to a single base rule for transformation rule instantiation, a separate
transformation rule has to be created for the situation that a Subtraction is used as a
UnaryExpression.

At the time of the initial submissions to the TTC, NMF Transformations did only
throw a plain InvalidOperationException whenever an abstract transformation rule was
called without an appropriate instantiating transformation rule. However, in the meantime
there is a meaningful error message to tell transformation developers what is wrong and
how they can fix such issues.

FunnyQT

As presented in listing 9.12, FunnyQT uses a similar technique like the disjunct mappings
from QVT-O with the generalization of other transformation rules. As a result, whenever
a new metaclass of the input metamodel is supported, the rule for this new metaclass has
to be referenced in every rule that generalizes these rules, e.g. rules that transform any
kind of specific statements to Stmt elements.

However, the extension scenario that actually appeared included additional expression
classes. The FunnyQT solution has split the usages of these expressions all across the
model transformation. The easy part is to create a new overload to specify how this new
expression type (the example included a UnaryExpression) has to be transformed to a
string representation. The more complex part is to determine the impact of these new
statements to the def and use links. As a reason, the FunnyQT solution creates these
links within the statements. Luckily, the unary expressions do not have an influence on def
and use links. But if we had introduced new expression types that influenced the used or
written variables (like for example lambda expressions, although they are not yet available
in Java), this would have badly affected the change impact size.

As FunnyQT uses a single polymorphic method to transform any object to string, there
is no specific function required to model the string representation for a UnaryOperator.

Epsilon and ATL

The Epsilon and ATL solutions also use polymorphic operations to turn expressions to
strings and thus, for the introduction of a UnaryExpression, only a further overload of
these polymorphic methods has to be created. In the Epsilon solution, also setting the
definers and users of a variable is done via polymorphic operations, so only new overloads
have to be created. In ATL, this is accomplished via a helper method that looks through

115

116 9. TTC Flowgraphs case study

the elements by using the allInstancies feature provided by EMF. Using this feature
often leads to concise code, but the scope is often unclear. It is not intuitive what all in
allInstancies really means.

For the introduction of new statement classes, only new transformation rules had to be
added that would specify how instances of these classes would have to be transformed to
Flowgraph elements. The transformation engines for ATL and ETL work quite similar in
that they match the input elements and the guards. The tracing in both of these language is
done implicitly. In ETL, this tracing functionality is inferred by the equivalent operation.
ATL even does the tracing implicitly as it automatically detects that assignments of types
that do not match have to be resolved with the trace.

As the general purpose solution is also entirely based on polymorphic operations, these
propositions also hold for the general purpose solution. The only difference is that the
general purpose solution does not involve a trace, but explicitly calls the rule methods for
descendent elements.

eMoflon

The eMoflon solution did not include support for unary expressions as it only is a proof-
of-concept solution. The existing solutions show that transforming a single element in
TGGs sometimes requires much more than a single transformation rule.

For its proof-of-concept nature, eMoflon is excluded from the comparison here.

Eclectic

The mapping language of Eclectic works pretty much in a similar way as ATL and ETL
in that the engine automatically matches the inputs and thus executes the rules. Thus,
the propositions for adding new statement metaclasses in ATL and ETL also hold for
Eclectic.

The huge difference in comparison to ATL and Epsilon is where Eclectic uses attribu-
tion similar to attribute grammars. However, although the underlying concepts differ, the
results do not as additional metaclasses also require an additional rule how to obtain the
attribution for instances of this new metaclass, only.

Conclusion

The NTL solution fundamentally differs to most other solutions in that it requires an
explicit structure of model transformations whereas the other transformation languages
infer the structure. In this way, NTL is more imperative than its opponents. This has an
influence on the size of changes due to updated requirements. In the extension scenario,
the introduction of Subtraction as a unary operator did not have an influence on most of
the solutions, as they do not draw a difference in how an operator is used. Thus, they
allow to specify how an element, e.g. a Subtraction, has to be transformed regardless
of the context this element is used in. The NTL solution, however, specifies a context
when elements have to be transformed, by declaring abstract transformation rules, e.g.
the UnaryOperator2Text rule. Instantiating transformation rules have to specify exactly
in which context they are to be applied instead of just ”any context”.

This may change when transformation rules in NTL may be allowed to instantiate multiple
other transformation rules. However, for the present, they must not. Thus, it is necessary
to e.g. create an entire new rule for Subtraction elements when transformed as a unary
operator rather than a binary operator.

116

9.7. Validation 117

In terms of the size of the change impact, the solutions also differ. However, except for
FunnyQT that seems to use a disjunct mapping like feature for polymorphic tracing,
all solutions could be written in a way to have perfective changes not affecting existing
code (leaving eMoflon unchecked). Besides ATL, all these solutions in fact did not
require changes of existing code to support new metaclasses but required straight forward
additions at few places.

NTL has the advantage that support of a new metaclass is really bundled in a single place,
i.e. only a single new transformation rule has to be created (possibly together with a helper
element that the transformation rule targets to). However, the fact that NTL requires
model transformations to have an explicit structure also increases the change impact as
new metaclasses (as the unary expressions in the example) may require new structures.
The fact that NTL currently disallows transformation rules to instantiate multiple other
transformation rules further increases this change impact.

9.7.2. Consistency

NMF

The NTL solution uses dependencies as in section 7.4 whenever possible. If it is not
possible to do so as e.g. the target model elements for expressions in task 1 (strings)
are immutable, it uses the tracing functionality. Also the in-place model transformations
are implemented as usual M2M-transformations where the target model this time consists
of helper models that are weaved into the model transformation. This makes the NTL-
solution very consistent as it uses a uniform programming style.

However, this consistency is mainly achieved through a consistent usage of NTL. As it is
possible to mix up multiple programming styles in NTL, the consistency is a property of
the solution rather than a property of the transformation language.

As NTL uses an explicit structure of the model transformation, represented by abstract
transformation rules acting as hubs, the transformation rules must explicitly refer to this
structure. As a consequence, the compiler already detect many mistakes in the structure
of the transformation.

FunnyQT

For the transformation of statements, FunnyQT uses model transformation rules pretty
much comparable to NTL, ATL or ETL. To derive the text statements, polymorphic
operations are used. However, to derive the control flow, the FunnyQT solution uses
explicit type switches to base the operations behavior on the currents element type. This
results in three different programming styles within the solution and clearly counts towards
an inconsistent solution.

To use a polymorphic method, the FunnyQT solution explicitly declares this method as
polymorphic. This is somehow similar to the abstract transformation rules in NTL as
it also results in explicitness. As a result, overloads of this polymorphic method can
be checked by the system that a declaration of this polymorphic method exists, in the
same way as the C# compiler can check that the transformation rule that another rule is
instantiating exists.

Epsilon

The Epsilon solution consists even of multiple file types. However, ETL is only an
extension of EOL for a very specific purpose, namely to specify mappings between model
elements. The solution exactly uses the language in this way as all mapping tasks are

117

118 9. TTC Flowgraphs case study

accomplished in ETL and everything else is done with operations in EOL. This also
speaks for a uniform programming style and a consistent solution.

However, EOL does not draw a difference between polymorphic methods and those who
are not. As a result, a typing mistake would result in a bug in the model transformation,
as no compiler can detect the incorrect spelling (possibly except for the fact that this
misspelled operation is never used). This may hamper the consistence of the solutions
during maintenance operations. However, an incorrect spelling of an overloaded operation
can be found through tests.

eMoflon

The reason that eMoflon extended the concept of TGGs was that TGGs alone would
be inappropriate for some model transformation tasks. Thus, they basically extended the
idea of TGGs by converters. These converters are specifically for simple operations such
as adding suffixes. As the eMoflon does not rely on external converters but only on
those included in the library, this library can be considered as similar to a part of the
transformation language, especially because of the simple nature of these converters. As
a consequence, the eMoflon specifies the biggest part of the model transformation as a
TGG and only relies on library elements, making the solution quite consistent.

However, as eMoflon is a graphical language, it is hard to indentify programming styles.

ATL

The ATL solution also uses mappings for mapping tasks. However, the refinement trans-
formation uses mappings not for real mapping tasks but to execute the control flow mech-
anism implemented in helper functions. Thus, the same concept is used entirely different.
This is specifically bad as invoking specific methods is not a true mapping task. Thus,
using mappings feels a bit inappropriate. Furthermore, ATL uses polymorphic methods
(helpers in ATL) but uses a single helper accessing the allInstancies feature of EMF which
represents a different programming style. Thus, the solution is also quite inconsistent.

The same propositions on polymorphic methods made for Epsilon regarding inconsistency
problems during maintenance operations also hold for ATL.

Eclectic

Eclectic consequently uses mappings and attribution. Much like in the Epsilon so-
lution, Eclectic uses mappings where appropriate and solves the other queries with its
attribution features which leads to a very consistent solution. As the attribution is declared
once, the compiler is able to check any inconsistency that may occur during maintenance.

General purpose

The general purpose solution is entirely based on polymorphic methods and dictionaries
for bookkeeping as there is no trace support available. However, dictionaries are used
not for all operations but only for those where cycles may occur. Furthermore, the same
remarks on inconsistencies in maintenance scenarios also hold for ETL. As the solution
uses C# as a dynamic language, no static type checking can be performed by the compiler
and thus no compiler errors are given when an operator is spelled incorrectly. Thus, the
solution is quite consistent.

118

9.7. Validation 119

Conclusions

The comparison shows that NTL was written in a very consistent way but this is also
made possible by other languages. Solutions like e.g. Eclectic or Epsilon very clearly
separate the purpose of their language constructs, thus making it very clear when to use
what language construct. However, the NTL solution in the way it is implemented in the
case study can keep up with the opponent solutions in terms of consistency, while other
solutions like FunnyQT or ATL lose ground.

However, whereas transformation languages like Eclectic imply a specific programming
style, the consistency of the NMF solution cannot be generalized to the transformation
language. Instead, it is only possible to state that it is possible to use NTLconsistently.

During maintenance, the transformation rule instantiation feature of NTL keeps up the
consistence of a model transformation as the transformation rules have to explicitly mark
themselves instantiating for a rule where the compiler can check that it exists. This differs
from the polymorphic methods that are sometimes only based on naming conventions.

9.7.3. Conciseness

For the conciseness, the eMoflon solution is not considered as it is only a proof-of-concept
solution. Furthermore, the visual nature of the language leads to limited comparability.
The eMoflon solution can only be compared to the other solutions by evaluating the
perceived conciseness with questionnaires. To some extend, this has been done in the
open peer reviews. However, eMoflon has received poor ratings for the later tasks for
being only a proof-of-concept.

The values of the Lines of Code (LOC) metric are depicted in table 9.1. These numbers
were counted excluding blank lines and comments by the case submitter Tassilo Horn.
However, for NTL, also the LOC as counted by Visual Studio is listed. The result differ
as Visual Studio counts the lines of IL code and only estimates the lines of source code. The
version of Visual Studio has the huge advantage that it is independent of the programming
style, i.e. where developers set line breaks. In theory, languages like C# allow to put
everything in a single line of code, but IL does not. The LOC metric abstracts from this.

Solution name Task 1/3.1 Task 2 Task 3.2 Total

NMF (based on IL) 299 134 19 452

NMF (code lines) 600 295 45 940

FunnyQT 223 57 19 299

Epsilon 320 90 29 439

ATL 397 268 66 731

Eclectic 290 97 29 416

Table 9.1.: Implementation size of the Flowgraphs case

As one can see in table 9.1, the NTL solution is the least concise solution in terms of
the actual file length (except comments and blank lines). Based on IL, the solution is
very close to the Epsilon and Eclectic solution. Only the FunnyQT solution is more
concise. As a reason, the FunnyQT solution used some shortcuts to e.g. shorten the
text generation of operators. The ATL solution loses in the comparison mainly because
of the refinement transformation that has to include a rule for every metaclass to call the
operations that perform the actual control flow transformation.

The huge difference in the manual measurement of code lines compared to the outcome
of Visual Studio has a simple reason. Visual Studio only counts the actual code lines, i.e.

119

120 9. TTC Flowgraphs case study

lines that specify execution semantics. This does not include class, interface or method
declarations, i.e. lines that make up the metadata. Only the executable code is measured.
It also does not include lines that are to comply with coding guidelines such as the rule to
put braces in a separate line. The NTL solution sticks to these common coding guidelines
to improve understandability but of course, additional braces hamper the conciseness of
the solution in terms of LOC. On the other hand, chains of commands are not counted as
one, although they might fit into a single line. Thus, the difference can be interpreted in
a way such that both the verbose metadata declarations as also the coding styles common
in C# lead to a quite verbose solution. A similar coding style (putting paranthesis in
separate lines) common in ATL is responsible for its relatively high LOC metric value in
the first task.

On the other hand, the metadata is evaluated by the NTL classes and thus indeed car-
ries execution semantics as a declaration of a nested class carries the semantics that the
transformation consists of that rule. Furthermore, it specifies the signature of the trans-
formation rule as well as its name. This is also specified in other transformation languages.
Thus, the NTL solution is also less concise when leaving aside syntactic noise. The reason
for that is that most transformation languages do not explicitly define the structure of
the model transformation but NTL requires transformation developers to do so, e.g. via
abstract transformation rules.

The worse conciseness is also reflected in the results of the open peer review in terms
of combined understandability and conciseness (see tables D.2, D.3 and D.4 in the ap-
pendix). Whereas the average evaluation for the conciseness of the other solutions (be-
sides eMoflon that does not count) is rated roughly equal, the NMF solution is rated
significantly worse. This may also be due to the fact that NTL has a lot of syntactic noise.
Where languages like ATL or ETL have a keyword, NTL usually has a whole method
signature. Instead of a transform keyword, the whole signature public override void

Transform(Type1 input, Type2 output, ITransformationContext context) is repea-
ted. Both expressions carry exactly the same semantics but the NTL-version is much more
verbose. As these lines appear for each transformation rule, the perceived conciseness is
degraded.

9.7.4. Understandability

The results of the combined assessment of understandability and conciseness are shown
in figure 9.7. The results are based on 49 responses to the Flowgraphs evaluation sheet.
These responses are distributed equally among the solutions. The results show that the
NMF solution was rated on third rank with respect to understandability and conciseness.
The NMF solution has even bet the ATL solution although the difference is small as can
be. However, the gap between Epsilon and Eclectic to NMF is very large.

This is due to the fact that both Epsilon and Eclectic are external languages that can
concentrate on conciseness and thus understandability. Both of them do not have any
syntactic noise that hampers the understandability of the solution. An internal language
always has the restrictions from its host language and thus can never be as concise as an
external language can. The results seem all the more astonishing with respect to the fact
that the NMF solution achieved a score as good as ATL in terms of understandability and
conciseness. ATL also is an external language that may use specialized language features
to improve its understandability and conciseness. A reason for that may have been that
the ATL solution lacks of conciseness in task 2 due to the refinement transformation that
only serves to execute some helper functions.

The other internal DSL in the Flowgraphs case, FunnyQT achieved the lowest ranking.
This is remarkable as FunnyQT has been the most concise solution in terms of LOC.

120

9.8. Conclusions 121

Figure 9.7.: The combined assessment of understandability and conciseness at the TTC
conference

Thus, it seems like most of the attendees of the TTC conference found FunnyQT difficult
to understand. A reason for this may be what already has been remarked in the open peer
reviews. The functional paradigm of Clojure hampers the understandability for many
of the attendees of the TTC. As NMF Transformations is based on the imperative
language C#, it is more understandable.

Hence, the results indicate that the NMF solution was very understandable. It does
not reach the understandability of Epsilon or Eclectic, but this is not suprising as
these languages enable the transformation developers to specify the transformations more
concisely. This can also affect understandability. However, the fact that NMF took the
third place despite its verbosity (it is the least concise solution) is a clear indication that
model transformations with NMF Transformations are very understandable.

9.8. Conclusions

The Flowgraphs case at the TTC is a complex scenario that involves a row of typical model
transformation tasks. This includes a M2M-transformation, a refinement transformation
and an embedded M2T-transformation. The case shows that these model transformation
tasks can be dealt with using NMF Transformations. The case can be solved in a very
consistent way. However, the NMF solution fundamentally differs in its implementation
from other solutions in that NMF Transformations requires an explicit transformation
structure where this structure is inferred in most other MTLs. This yields a less concise
model transformation and thus larger change impact when new input model elements
are added. However, the additional structure helps to keep the model transformation
consistent in maintenance scenarios and may also improve the solutions understandability.
Unfortunately, the results for the understandability and overall evaluation from the TTC
were not published early enough to have them presented in this thesis.

However, despite its verbosity, NMF has achieved a third place (practically together with
ATL) in terms of the combined assessment of understandability and conciseness. This indi-
cates that model transformations with NMF Transformations are very understandable.

On the other side, for the very most concepts used in the other solutions (besides the
eMoflon solution), equivalent concepts in NMF Transformations exist. The concepts
provided by NMF Transformations fit naturally to solve the Flowgraphs case. But
unlike the other solutions based on textual MTLs, NMF Transformations has great
tool support. Specifically, this tool support has been reviewed in terms of discoverability
support. A good discoverability support eases the learnability and thus helps to improve
the productivity in maintenance scenarios.

121

10. TTC Petri Nets to State Charts case
study

In this chapter, the Petri Nets to State Charts (PN2SC) case of the TTC is used as a
case study to evaluate the usefulness of NMF Transformations. First, an overview on
the case description is given in section 10.1. Section 10.2 explains the planned validation
for this case study evaluation. The next section 10.3 covers the solution of the subtasks
involved in solving the Petri Nets to State Charts case with NMF. Section 10.4 briefly
introduces the solutions from the opponents at the TTC. Section 10.5 then presents the
results from the TTC. Section 10.6 performs the validation of the PN2SC case with respect
to the evaluation criteria from section 10.2.1, before finally section 10.7 concludes this
chapter.

The solution description of the Petri Nets to State Charts case is based on [HGH13b]
meanwhile the case description is based on [GR13].

10.1. Case Overview

Solutions of the PN2SC case have to solve the algorithm to transform Petri Nets to hi-
erarchical state charts that has been originally described in [Esh05]. This transformation
essentially creates a hierarchical state chart that represents the Petri Net. However, the
Petri Net is destroyed during this process which is why the transformation is referred to
as being input-destructive.

Figure 10.1 shows the metamodels of Petri Nets and State Charts that is used for this
transformation task. Petri Nets have the structure of places and transitions where each
transition can have arbitrary many source and target places.

The state chart model in PN2SC is a usual metamodel for state charts with states and
transitions buth with the special property that it is hierachical. The hierarchic nature
arises from the introduction of compound states that can either be OR states or AND
states. These compounds can contain other states and describe the hierarchical structure
of the state machine. As there may be multiple tokens in a Petri Net, a hierarchical state
chart can have multiple current (active) states. An AND compound means that all of
the subsequent child states must be active meanwhile an OR compound expresses that
any of the child states must be active. The model further contains Basic and HyperEdge
elements to represent the places and transitions of the original Petri Net.

123

124 10. TTC Petri Nets to State Charts case study

Figure 10.1.: The metamodels for Petri Nets and State Charts [GR13]

10.1.1. Initialization

In a first initialization step, the transformation creates a corresponding State Chart model.
For every place, a corresponding Basic and OR element has to be created where the OR
state contains the Basic state and both have their names set to the corresponding places
name. Each transition is also transformed into a HyperEdge state. These Basic and
HyperEdge elements are to be connected according to the pret/postp/prep/postt links in
the Petri Net.

10.1.2. Reduction

The transformation now aims to simplify (and thus destruct) the Petri Net step by step
in order to retrieve the hierarchic structure of the resulting state chart by applying two
reduction rules. These rules aim to deduct OR or AND compounds and are thus named
accordingly.

The AND rule

Figure 10.2.: The impact of the AND rule to the Petri Net and the State Chart model
[GR13]

The AND-rule is applicable whenever a set of places q1, . . . , qn has only common incoming
and outgoing transitions. It is not allowed that any transition may be an incoming transi-
tion for only some of these places. In this case, these places are merged into a single place.

124

10.1. Case Overview 125

As these places are represented in the resulting state chart by compound states, a new
AND compound a is created to contain these compounds. Furthermore, a new compound
state p is created to contain this state a. Figure 10.2 shows this procedure.

The OR rule

To perform the OR rule to places q and r, no transition t may be a common incoming or
outgoing transition for either of these places.

Figure 10.3.: The impact of the OR rule to the Petri Net and State Chart model [GR13]

In this case, these places can be merged into a new place pPN and so can the corresponding
compound OR elements in the State Chart model. This newly created place p has the
incoming/outgoing transitions of both q and r. In the State Chart Model, a new OR
pSC is created that contains the elements of both OR elements corresponding to q and r.
Alternatively, either q or r can be reused for this purpose.

For more details to the transformation or its purpose, see [Esh05, GR13].

10.1.3. Extensions

The case description of the Petri Nets to State Charts case included some extensions,
mainly to specify the resulting state charts more precisely in order to have them validated
automatically by the validator written by Tassilo Horn. An important extension was to set
the correct containment position for hyper edges. This means that a hyper edge should be
contained in the least common compound state that (transitively) contains all incoming
and outgoing Basic elements of the hyper edge.

Furthermore, the case description defines several bonus criteria including transformation
language support for change propagation, debugging support, refactoring support, sup-
port for bidirectionality, verification and simulation. Few solution papers of the solutions
to these cases included descriptions in which way they offered means to provide these
additional features but the support has been asked for in the open peer reviews.

10.1.4. Evaluation

The evaluation scheme of this case is divided into basic and bonus criteria. The basic
criteria includes that the correctness of the presented solutions, secondly their performance,
their understandability and reproducibility. Understandability and reproducibility are
reviewed by publishing all artifacts to SHARE [VGM11] to enable others to review these
artifacts and run the transformation.

125

126 10. TTC Petri Nets to State Charts case study

10.2. Planned validation

This section presents the planned validation for this case study. Section 10.2.1 introduces
the validation criteria for this case study before section 10.2.2 describes the procedure how
the validation is done.

10.2.1. Validation criteria

Similar to the Flowgraphs study, the Petri Nets to State Charts case at the TTC offers
great ways to compare NMF with other transformation tools and languages. However,
unlike the Flowgraphs case, the Petri Nets to State Charts case did not offer such typical
model transformation tasks. As a result, the transformation tools that participated were
not as typical transformation languages as those who participated in the Flowgraphs case.
As a reason, the model transformation constructs the State Chart model by destructing
the Petri Net, which is somehow an unusual behavior for a model transformation. Thus,
we can identify the following validation goals:

• Applicability & Integration: By solving the Petri Nets to State Charts case, it is
evaluated that NMF Transformations is an applicable technology to transform
cyclic models. Furthermore, it is evaluated how NMF Transformations integrates
with general purpose code.

• Understandability: Much like in the Flowgraphs case, the TTC also here collects
data on the perceived conciseness and understandability. Together with the metrics
results of the Lines of Code metric, it may be possible to draw conclusions to the
understandability of NMF Transformations, especially compared to other solu-
tions. However, as the Petri Nets to State Charts case has been solved by other
developers than in the Flowgraphs case that largely have other background, the
results may differ.

• Modifiability: Unlike the Flowgraphs case, the PN2SC case does not contain such
a clear extension scenario. Thus, it is hardly possible to validate the modifiability
regarding to perfective changes. Instead, we concentrate on the support of the com-
peting transformation languages and tools for debugging and refactoring the model
transformations. We may take advantage of the perceived debugging and refactoring
support that has been collected during the TTC open peer reviews.
Unlike the Flowgraphs case, the discoverability support is not evaluated once more
to keep the master thesis compact. Furthermore, the PN2SC case has been solved
with a couple of languages where discoverability support is hard to measure. Support
for testing is also not evaluated.

• Consistency: As the PN2SC involves an unusual model transformation, many solu-
tions may get to the boundary of their expressiveness (including NMF Transfor-
mations). Thus, it is important to validate how the consistency can be preserved.

• Conciseness: The mixture of languages that has been applied in the PN2SC case
makes it interesting to validate the solutions in terms of conciseness. Especially, the
difference of this case study to the Flowgraphs case is interesting.

Again, the performance of the solution is not a validation criteria as it is not related to
maintenance.

10.2.2. Validation procedure

As the Petri Nets to State Charts case coming from the TTC has the same origin as the
Flowgraphs case, the surrounding conditions for the validation are basically the same. That
is, all solutions are available via SHARE1 and there is a combined assessment of conciseness

1http://goo.gl/rgGBJ

126

http://goo.gl/rgGBJ

10.3. NMF Solution 127

and understandability that can be used to draw conclusions for the understandability of
the solutions.

However, further to the validation criteria for the Flowgraphs case, also debugging and
refactoring support is evaluated in this case study. The evaluation for both of these criteria
can take advantage of the fact that both the debugging and the refactoring support were
asked for to evaluate in the open peer reviews. However, many solution papers (including
the NMF solution paper) did not include any statements on debugging or refactoring
support of the used tools. As a consequence, the data from the open peer reviews might
be less reliable. Thus, the validation will also focus on reviewing the solution demos for
debugging and refactoring support.

10.3. NMF Solution

This section presents the solution of the Petri Nets to State Charts case using NMF
Transformations. The solution description is divided into two subsections that describe
the solution to the initialization (section 10.3.1) and the reduction part (section 10.3.2).

10.3.1. Initialization

The task of the initialization is to create an initial structure for the state chart model.
Although it is not mentioned in the description, the first rule for this initialization is that
for each Petri Net, a state chart has to be created with a top-state which is an AND.

1 public class Petr iNet2StateChart : TransformationRule<Net ,
Statechart>

2 {
3 public override void Regi s terDependenc ies ()
4 {
5 Require (Rule<PetriNet2TopState >() , (chart , topState) => chart .

TopState = topState) ;
6 }
7 }
8
9 public class PetriNet2TopState : TransformationRule<Net , AND>

10 {
11 public override void Regi s terDependenc ies ()
12 {
13 RequireMany (Rule<Place2Or >() ,
14 s e l e c t o r : net => net . Places ,
15 p e r s i s t o r : (and , p l a c e s) => and . Contains . AddRange(p l a c e s)) ;
16
17 RequireMany (Rule<Transition2HyperEdge >() ,
18 s e l e c t o r : net => net . Trans i t i ons ,
19 p e r s i s t o r : (and , t r a n s i t i o n s) => and . Contains . AddRange(

t r a n s i t i o n s)) ;
20 }
21 }

Listing 10.1: The transformation rules to transform the Petri Net

The first rule in listing 10.1, PetriNet2StateChart, is a rule that transforms a Petri Net
into a State Chart. The only thing that happens here is that a top state for the Petri
Net is required and the top state is saved in the TopState reference of the StateChart.

127

128 10. TTC Petri Nets to State Charts case study

The second rule, PetriNet2TopState creates the top state for the Petri Net. This rule
already contains information for the next two rules: For every Place within the Petri Net,
a corresponding OR element should be created and added to the initial AND top state.
Furthermore, any transition should be transformed to a HyperEdge. Note that within this
rule, there is no information about how the places are to be transformed, it is only required
that they are transformed using the Place2OR-rule. The same applies for the transitions,
it is only required that they are transformed with the Transition2HyperEdge-rule.

Furthermore, for every Place p in the PetriNet

• an instance of Basic, b (with the name set accordingly to p.name) and

• an instance of OR o, such that o.contains = {b}

have to be created.

1 public class Place2Bas ic : TransformationRule<Place , Basic>
2 {
3 public override void Transform (Place input , Bas ic output ,

ITransformationContext context)
4 {
5 output .Name = input .Name ;
6 }
7 }
8
9 public class Place2Or : TransformationRule<Place , OR>

10 {
11 public override void Transform (Place input , OR output ,

ITransformationContext context)
12 {
13 output .Name = input .Name ;
14 }
15
16 public override void Regi s terDependenc ies ()
17 {
18 Require (Rule<Place2Basic >() ,
19 p e r s i s t o r : (or , ba s i c) => or . Contains . Add(ba s i c)) ;
20 }
21 }

Listing 10.2: The transformation rules for a place

For the implementation, two rules were created to do exactly what was in the description.
The first rule in listing 10.2 is Place2Basic that fulfills the first part of the requirement:
A new Basic state is created and the name is set accordingly. The second rule, Place2Or,
fulfills the second requirement and fills its Contains reference (which is for the .NET
naming conventions now in Pascal Case, i.e. start with an upper case letter) with the
Basic element created for the Place that is also the input for this rule. Furthermore, we
also set the name of the OR element for better evaluation.

The description requires a solution for every transition within the Petri Net to create a
HyperEdge with a corresponding name and furthermore transform all the pret/postp and
post/prep links accordingly. Since we already accessed this rule in listing 10.1, we have to
name this rule accordingly as Transition2HyperEdge (see fig 10.3).

128

10.3. NMF Solution 129

1 public class Transit ion2HyperEdge : TransformationRule<Trans i t ion
, HyperEdge>

2 {
3 public override void Transform (Trans i t i on input , HyperEdge

output , ITransformationContext context)
4 {
5 output .Name = input .Name ;
6 }
7
8 public override void Regi s terDependenc ies ()
9 {

10 RequireMany (Rule<Place2Basic >() ,
11 s e l e c t o r : t r a n s i t i o n => t r a n s i t i o n . Prep ,
12 p e r s i s t o r : (t r a n s i t i o n , preps) => t r a n s i t i o n . Rnext . AddRange(

preps)) ;
13
14 RequireMany (Rule<Place2Basic >() ,
15 s e l e c t o r : t r a n s i t i o n => t r a n s i t i o n . Postp ,
16 p e r s i s t o r : (t r a n s i t i o n , pos t s) => t r a n s i t i o n . Next . AddRange(

pos t s)) ;
17 }
18 }

Listing 10.3: The transformation of a transition

The Transition2HyperEdge-rule again requires that the places in the Prep and Postp
references are transformed. However, the transformation engine is responsible that any
place is transformed at most once per context and rule.

With these five transformation rules, the initialization task is completed. The demanded
equivalence function is implicitly stored in the transformation context, as it contains a
trace where we just need to trace the transformation output, where a place has been
transformed by the Place2Basic or Place2OR rule. However, this trace functionality is
not serialized by default. If we wanted to serialize the trace into a file, we would have to
do this on our own.

10.3.2. Reduction

By the time of the TTC, NMF did not support optimization by reduction. NMF Trans-
formations indeed has a pattern matching system to execute transformation rules based
on patterns but the system to trigger the required checks does not work in this situation
as NMF Transformations only allows to check a pattern once. Furthermore, NMF
Transformations currently does not allow to match sets of objects of any size (only
fixed sizes). Thus, we implemented the reduction in general purpose code in C#. How-
ever, this general purpose code is embedded in the transformation and makes use of the
transformation engine, especially of the provided trace.

Therefore, we extend the transformation with the given reduction rules and include the
reduction code. As the rules apply on transitions, we write this code in the Transform-
method of the Transition2HyperEdge-rule. We can just call the reduction rule from
within the Transform-method as both the reduction rules and the transformation is written
in C#. We can even put the helper methods that we need into the class representing the
Transition2HyperEdge-rule. The following two paragraphs describe the implementation
of each reduction rules in more detail.

129

130 10. TTC Petri Nets to State Charts case study

Applying the AND rule

The AND rules are implemented in a single method which takes a set of places and a
transformation context as parameters. The form to take a set of places as arguments makes
this reduction rule more flexible. For example, it can be called for both the predecessors
and the predecessors of a transition.

1 i f (p l a c e s == null | | p l a c e s . Count < 2) return ;
2 var p lace = p l a c e s [0] ;
3 foreach (var other in p l a c e s . Skip (1))
4 {
5 i f (! o ther . Postt . SetEquals (p lace . Postt) | | ! o ther . Pret . SetEquals

(p lace . Pret)) return ;
6 }

Listing 10.4: Code to check whether the AND rule is applicable

At first, we need to check whether the AND rule is applicable at all. This procedure is
presented in listing 10.4.

As soon as a list of candidate places passes these checks, the places and transitions are
saved copied into arrays named places, postt and pret. Copying these items into an array
is necessary because .NET throws exceptions if a collection is edited while it is enumerated.
As the rest of this method will eventually change these collections, we have to copy these
into new arrays.

1 var or = new Place () { Name = ”q ” + (crea ted++) . ToString () } ;
2 or . Cnet = place . Cnet ;
3 or . Cnet . P laces . RemoveRange (p l a c e s) ;
4 foreach (var t in p o s t t)
5 {
6 t . Prep . RemoveRange (p l a c e s) ;
7 t . Prep . Add(or) ;
8 }
9 foreach (var t in pre t)

10 {
11 t . Postp . RemoveRange (p l a c e s) ;
12 t . Postp . Add(or) ;
13 }

Listing 10.5: Code to apply the AND rule to the PetriNet

After saving the arguments, we have to apply the AND rule to the Petri Net. The code
for this procedure is presented in listing 10.5. Afterward, we create a new place replacing
the ones that we are now removing and assign it to the PetriNet. The trace entry created
for the abandoned place remains although we could also remove it. We will not access
this place anymore and thus, the trace entry may reside in the transformation context.
At some point, the garbage collector will take it away, anyway. On the other hand, we
remove the original collection of places. Furthermore, for every transition that uses any of
the places, we configure it to not use any of the places anymore and use the newly created
place instead.

130

10.3. NMF Solution 131

1 var or t rans formed = context . Cal lTrans format ion
2 (andRulePlace2Or , or) . Output as OR;
3 var and = new AND() ;
4 or t rans formed . Contains . Add(and) ;
5 var p lace s t rans f o rmed = context . Trace . ResolveMany<Place , OR>(

p l a c e s) ;
6 or t rans formed . Rcontains = p lace s t rans f o rmed . F i r s t () . Rcontains ;
7 and . Contains . AddRange(p lace s t rans f o rmed) ;

Listing 10.6: Code to apply the AND rule to the statechart model

Now that we applied the AND rule to the Petri Net, we also have to apply it to the state
charts. The code for this is presented in listing 10.6. We do not just create a new OR
element. Instead, we call a transformation rule to do this. As a consequence, there is a trace
entry created for the transformation. In this way, the algorithm can derive that the newly
created place corresponds to the new OR model element. This is important especially for
the OR rule implementation. The variable andRulePlace2Or is private variable that caches
the instance of the AndRulePlace2Or rule. The implementation of this rule is omitted here
as it only copies the name of the corresponding place. We just need this rule to exist in
order to have a nice way to create a trace entry. Then we register the newly created OR
element at the parent compound by setting the opposite reference. The code generated
for the StateChart metamodel is aware of the opposite relations and sets the opposite
references automatically.

1 foreach (var t in p o s t t)
2 {
3 ApplyOrRule (t , context . Trace . Reso lveIn (hypeEdgeRule , t) ,
4 context) ;
5 }
6 foreach (var t in pre t)
7 {
8 ApplyOrRule (t , context . Trace . Reso lveIn (hypeEdgeRule , t) ,
9 context) ;

10 }

Listing 10.7: Code to check whether any OR rule is applicable now

Finally, the application of the AND rule may have the consequence that it is now possible to
apply OR rules where the preconditions were not met before because any of the transitions
using all the places of this AND rule application are not replaced by a single place. This
might cause a transition to comply with the OR rule prerequisites. However, the OR rule
requires not just a transition but also the corresponding HyperEdge. Thus, we need to
use the transformation context and trace the corresponding HyperEdge first. To do this,
we need to tell NMF Transformations the input and the transformation rule. In this
way, the general purpose C# code can easily make use of the trace functionality of NMF
Transformations.

Applying the OR rules

The basic structure of the OR rule implementation is much the same like the implemen-
tation of the AND rules. First, we check, whether the rule is applicable. Then, we apply
it to the Petri Net and the State Chart model. Afterward, we check if there is any AND
rule now applicable.

131

132 10. TTC Petri Nets to State Charts case study

1 i f (input == null | | output == null | | input . Postp . Count != 1 | |
input . Prep . Count != 1) return ;

2 var q = input . Prep . F i r s t () ;
3 var r = input . Postp . F i r s t () ;
4 foreach (var qPret in q . Pret)
5 {
6 i f (r . Pret . Contains (qPret)) return ;
7 }
8 foreach (var qPostt in q . Postt)
9 {

10 i f (r . Postt . Contains (qPostt)) return ;
11 }

Listing 10.8: The code to check whether the OR rule is applicable

In listing 10.8, the code to check the prerequisites for the OR rule is presented. We basically
do all the checks that are described in [GR13].

1 q . Postt . Remove(input) ;
2 r . Pret . Remove(input) ;
3 i f (q != r)
4 {
5 r . Cnet = null ;
6 q . Pret . AddRange(r . Pret) ;
7 q . Postt . AddRange(r . Postt) ;
8 r . Pret . Clear () ;
9 r . Postt . Clear () ;

10 q .Name = q .Name + ” or ” + r .Name ;
11 input . Cnet = null ;
12 }

Listing 10.9: The code to apply the OR rule to the PetriNet

In listing 10.9, the effect of the OR rule to the Petri Net is specified. We use the proposed
version from listing 10.9 to merge the OR elements instead of creating a new one. In this
implementation we use the names of the two places p and q to rename the place q. The
place p is discarded.

1 var q or = context . Trace . Resolve<Place , OR>(q) ;
2 var r o r = context . Trace . Resolve<Place , OR>(r) ;
3 output . Rcontains = q or ;
4 i f (q or != r o r)
5 {
6 r o r . Rcontains = null ;
7 q or . Contains . AddRange(r o r . Contains . ToArray ()) ;
8 q or . Next . AddRange(r o r . Next) ;
9 q or . Rnext . AddRange(r o r . Rnext) ;

10 r o r . Next . Clear () ;
11 r o r . Rnext . Clear () ;
12 q or .Name = q .Name ;
13 }

Listing 10.10: The code to apply the OR rule to the state chart model

132

10.4. Other solutions 133

The code to apply the effect of the OR rule to the state charts model is shown in listing
10.10. Again, this is basically the same as before on the PetriNet, we merge the OR
elements instead of creating a new one and just abandon the old one. To do this, we need
the OR element that corresponds to q. This could be an OR element initially created for
a place or an OR element created by the explicit call to the transformation context in the
AND rule (see listing 10.6). Thus, we use a different version of the trace functionality and
do not specify the transformation rule that has been used to transform the place into an
OR element.

1 foreach (var t in q . Pret . ToArray ())
2 {
3 ApplyAndRule (t . Postp , context) ;
4 ApplyAndRule (t . Prep , context) ;
5 }
6 foreach (var t in q . Postt . ToArray ())
7 {
8 ApplyAndRule (t . Postp , context) ;
9 ApplyAndRule (t . Prep , context) ;

10 }

Listing 10.11: The code to check whether any AND rule is now applicable

Much like in the AND rule, we now check, whether any new OR rule is applicable with
the code in listing 10.11. We must copy the items into an array prior to iteration as
.NET otherwise claims that we attempt to remove items from a collection we are currently
iterating. A reversed for-loop is a viable alternative but less concise.

10.4. Other solutions

In this section, we go through the other competing solutions of the Petri Nets to State
Charts case and briefly introduce them. Unlike for the Flowgraphs case, there is no
additional general purpose solution as the reduction is already implemented in general
purpose code by the NMF solution. As the initialization step includes a model transfor-
mation of models exposing a high degree of cycles, an implementation of the initializa-
tion task would incorporate a lot of bookkeeping (see section 6.2). All solution papers
can be obtained online under http://planet-sl.org/community/index.php?option=

com_community&view=groups&task=viewgroup&groupid=24. Furthermore, demos can
be found on SHARE2.

10.4.1. FunnyQT

For the Petri Nets to State Charts case, FunnyQT uses its model transformation API for
the initialization and its plain model modification API for the reduction part. As the code
for the initialization is very similar to the code presented in listing 9.11, it is not repeated
here. The AND rule and OR rule are implemented in general purpose Clojure code. To
give an impression how this code looks like, the implementation of the OR rule is shown
in listing 10.12.

2http://goo.gl/rgGBJ

133

http://planet-sl.org/community/index.php?option=com_community&view=groups&task=viewgroup&groupid=24
http://planet-sl.org/community/index.php?option=com_community&view=groups&task=viewgroup&groupid=24
http://goo.gl/rgGBJ

134 10. TTC Petri Nets to State Charts case study

1 (defn or−rule [pn sc p lace2o r]
2 (loop [t s (vec (e a l l o b j e c t s pn ’ Trans i t i on)) , app l i ed f a l s e]
3 (i f (seq t s)
4 (let [t (f i r s t t s) , preps (prep t) , postps (postp t)]
5 (i f (= 1 (count preps) (count postps))
6 (let [q (f i r s t preps) , r (f i r s t postps)]
7 (i f (or (i d e n t i c a l ? q r)
8 (and (not (member? r (ad j s q : pre t : postp)))
9 (not (member? r (ad j s q : pos t t : prep)))))

10 (let [merger (@place2or q) , mergee (@place2or r)]
11 (when−not (i d e n t i c a l ? q r)
12 (eadda l l ! q : pre t (eget−raw r : pre t))
13 (eadda l l ! q : pos t t (eget−raw r : pos t t))
14 (e d e l e t e ! r)
15 (eadda l l ! merger : conta in s (eget−raw mergee : conta in s))
16 (e d e l e t e ! mergee))
17 (e d e l e t e ! t)
18 (recur (rest t s) t rue))
19 (recur (rest t s) app l i ed)))
20 (recur (rest t s) app l i ed)))
21 app l i ed)))

Listing 10.12: The implementation of the OR rule in Clojure

Some reviews claimed that this code following fully functional programming is very hard
to read and barely understandable at all. However, it definitely is a very concise solution.
In the open peer reviews, the FunnyQT solution has also been the fastest solution by far,
now beaten only by the NMF solution. The FunnyQT solution was awarded for the best
performance as well as the best overall solution.

10.4.2. UML-RSDS

UML-RSDS is a transformation language entirely different to any other solution. Model
transformations are defined entirely by a set of rules defined with pre- and post-conditions.
From these pre- and postconditions, UML-RSDS generates Java or C# code that executes
the transformation. As an example, the transformation rule that for each place a Basic
element as well as a OR element is created is defined using the following post-condition:

Basic→ exists(b|b.name = name&OR→ exists(o|o.name = name&b : o.contains)).

134

10.4. Other solutions 135

The reduction is performed in a similar way. The following gives an example of the pre-
and postcondition, whose enforcement performs the OR-rule.

prep.size = 1&postp.size = 1&

q : prep&r : postp&

(q.pret ∩ r.pret)→ size() = 0&

(q.postt ∩ r.postt)→ size() = 0⇒
OR→ exists(p|p.name = q.name + ”OR” + r.name&

p.contains = OR[q.name].contains ∪OR[r.name].contains&

q.name = p.name)&

q.pret→ includesAll(r.pret)&

q.postt→ includesAll(r.postt)&

r → isDeleted()&

self → isDeleted()

The authors note that this definition closely follows the specification of the desired trans-
formation. However, in logic, the above post-condition can never hold as the equations
p.name = q.name + . . . and q.name = p.name may never hold at the same time. As the
specification works, the engine treats the logical statements slightly differently than one
would expect from propositional calculus. As a result, the specification may be easy to
read but is difficult to modify as one has to clearly understand what the engine is doing
with the specification. This is an error-prone procedure, as the specification relies on the
engine implementation.

The UML-RSDS solution also supports bidirectionality, e.g. the Petri Nets to State
Charts transformation can be reversed.

10.4.3. Story Driven Modeling Library (SDMLib)

SDMLib is an internal DSL based on Java for domain modeling with a curious history.
It was originally developed to show students complaining on the usability of visual tool
Fujaba that a textual tool would be much worse [Z1̈3]. Surprisingly for the authors,
the textual syntax gained popularity and thus has been further developed. SDMLib also
creates a classes to implement model transformations.

For model transformation purposes, SDMLib utilizes the Fujaba tool, as it directly
accesses its internal tool API. As a consequence, SDMLib is in some sort similar to graph
grammars like TGGs. Thus, the solution creates instances of strongly typed pattern
objects as demonstrated in listing 10.13.

1 P2SModelPattern preAndPattern = new P2SModelPattern () ;
2 Trans i t i on preAndT = preAndPattern . hasElementTransitionPO (null) ;
3 preAndT . hasPrepCard (2 , I n t e g e r .MAX VALUE) ;
4 // a l l pre−p l a c e s have the same incoming t r a n s i t i o n s
5 TransitionPO preTrans i t i on = preAndT . startNAC () . hasPrep () . hasPret

()
6 . withPatternObjectName (”preTrans i t i on ”) ;
7 PlacePO prePlaceMis s ingPreTrans i t i on = preAndT . hasPrep ()
8 . withPatternObjectName (”preP laceMis s ingPreTrans i t i on ”) ;
9 preP laceMis s ingPreTrans i t i on . startNAC () . hasPret (p reTrans i t i on) .

endNAC
10 () . endNAC() ;

Listing 10.13: Strongly typed pattern objects in SDMLib

135

136 10. TTC Petri Nets to State Charts case study

As the code is a bit hard, SDMLib also offers to automatically visualize the pattern
structure of the transformation. Such a visualization is shown in figure 10.4. The patterns
created in listing 10.13 are in the upper left corner.

Figure 10.4.: Visualization of the transformation patterns in the SDMLib solution [Z1̈3]

The pattern defined in listing 10.13 uses a negative application pattern (NAC), i.e. a
pattern that describes when not to apply a transformation pattern. What the solution
does is to nest these NACs. Thus, to have the pattern match a transition, the transition
must have at least two pre-places (line 3). Furthermore, there must not be a pre-place
that has an incoming transition (line 5) when there is a pre-place that does not have the
same incoming transition (line 9).

The initialization is also done through such patterns. The pattern objects further have
methods generated for the models that allow to create child objects in a similar way to
the sub-patterns and NACs. I.e., there are functions startCreate() and destroy() that
allow to add and remove objects.

Furthermore, every object in SDMLib has the ability to dump it into a dot-file that can
be further processed into an svg-file. This enhancement to debugging brought SDMLib
an award for the best debugging support.

10.4.4. EMF-IncQuery

The EMF-IncQuery solution consists of two parts. In the first part, EMF-IncQuery
is used to specify patterns when to execute certain transformation rules. The imperative
parts of these rules are then specified in Xtend. The orchestration is done with Java.
Listing 10.14 shows how the declaration of such patterns look like in EMF-IncQuery
(for the AND rule).

136

10.5. Results on the TTC 137

1 pattern andPrecond (P: Place , T: Trans i t i on) {
2 Trans i t i on . prep (T,P) ;
3 countPrePlaces == count find postT (PX , T) ;
4 check (countPrePlaces >= 2) ;
5 neg find nonCommonTPost(T) ;
6 } or {
7 Trans i t i on . postp (T, P) ;
8 countPostPlaces == count find preT (PX , T) ;
9 check (countPostPlaces >= 2) ;

10 neg find nonCommonTPre(T) ;
11 }

Listing 10.14: The AND rule pattern in EMF-IncQuery

EMF-IncQuery is an incremental technology and therefore supports change propagation
in the sense that as soon as new places are added to the Petri Net, the EMF-IncQuery
processor can react on that.

10.4.5. AToMPM

AToMPM is a model transformation language based on TGGs. However, AToMPM
allows to explicitly set the control flow to arrange in which order the graph transformation
rules are to be executed. Figure 10.5 shows simplified representations how such rules look
like. In the tool, it is necessary to specify which type the elements on the left and right
hand side should be and which references are represented by the conjunction lines. The
purple lines represent the tracing functionality of AToMPM.

Figure 10.5.: The graph transformation rules to perform the AND rule with AToMPM

Furthermore, the AToMPM solution also consisted of additional rules to simulate a
PetriNet which has been awarded with the best simulation support.

10.5. Results on the TTC

The NMF solution to the Petri Nets to State Charts case has been awarded for having
the best refactoring support. This can be seen as a consequence of the language nature
of NTL to be an internal DSL and thus inherit the great tool support that is provided

137

138 10. TTC Petri Nets to State Charts case study

Figure 10.6.: The overall evaluation results from the TTC conference for the PN2SC case

by Visual Studio and other productivity enhancement tools like ReSharper3 that offer
support for various refactorings such as described in [FB99] out of the box. These tools
also include a great debugging support, as Visual Studio supports debugging with the ”Edit
& Continue” feature that allows developers to define breakpoints, edit the code while the
execution remains on the breakpoint and continue execution, provided the changes make
this possible.

However, NTL was not the only internal DSL and other internal DSLs such as SDM-
Lib [Z1̈3] provided a better support to display a model to the user. Given that NMF
Transformations does not rely on a specific metamodeling foundation like EMF, such
operations are hard to implement by the transformation engine. Thus, the debugging
support award was given to the SDMLib solution.

In the overall evaluation, the NMF Transformations solution achieved the second last
place in the ranking of the overall evaluation. As the overall evaluation closely correlated
to the evaluation of the presentation, this may also be due to a worse presentation.

The evaluation data is presented in more detail in the appendix, see D.3.

10.6. Validation

In this section, the NMF solution of the Petri Nets to State Charts case is validated for to
the validation criteria defined in section 10.2.1 in comparison to the other solutions. The
validation is done by evaluating the validation goals stepwise in the following subsections.

In the validation, the AToMPM solution is ignored as both the SHARE demo is mean-
ingless and the solution author did not attend at the TTC conference. As an example,
attempting to load the test models, AToMPM returns with the error message that one

3http://www.jetbrains.com/resharper/

138

http://www.jetbrains.com/resharper/

10.6. Validation 139

was trying to load a file with an invalid extension. This error message is just wrong, as
the test model files also has the file extension as specified as correct in the error mes-
sage (*.model). The solution authors obviously assumed that the SHARE demo would
initialize just as they left it when terminating the VM - which is not true.

10.6.1. Modifiability

10.6.1.1. Debugging support

The results of the perceived debugging support as collected in the questionnaires at the
TTC conference are shown in figure 10.7. From this figure, SDMLib has the best debug-
ging support, closely followed by NMF and EMF-IncQuery.

Figure 10.7.: The results for the perceived debugging support for the PN2SC case

The debugging support for NTL has already been explained in section 8.2. However, the
debugging support was not a focus of the solution paper at the TTC. This may be a result
for the relatively poor rating in the open peer reviews (see section D.3). In fact, most
solution papers did not make a statement on debugging and refactoring support of the
transformation tool.

A further problem for NTL in the open peer review was that most of the reviewers were
not so familiar with the debugging (and refactoring) support of Visual Studio, as most of
the developers in the TTC are rather working with Eclipse.

FunnyQT

Being an internal DSL, FunnyQT inherits the tool support from the Clojure tool. As in
section 9.7.1, we assume the Eclipse plug-in Counterclockwise as the IDE to use FunnyQT.
There, it is possible to set breakpoints in the code but as Tassilo Horn (the author of
the FunnyQT solution) admits, the debugging support is not yet ready for prime-time.
The language paradigm of Clojure prevents proper debugging. Clojure as a functional
programming language passes functions as parameters that are executed elsewhere. As a
consequence, the reference to a function and the place where this function is executed can
easily differ, such that the position where a fault appears usually is not the place where
the bug is in the code. This is similar to NTL where the persistors and selectors can be
specified through lambda expressions. Visual Studio 2012 does not allow to set breakpoints
in lambda expressions (although it allows to step through lambda expressions). But unlike
C#, Clojure is an entirely functional programming language and thus, such effects are
much more common than in C#.

However, FunnyQT has built-in model visualization support that makes it possible to
discover the elements that are matched by a given pattern.

139

140 10. TTC Petri Nets to State Charts case study

UML-RSDS

In the solution paper, the authors stated that UML-RSDS does not provide tool support
for debugging.

SDMLib

SDMLib is an internal DSL for Java and thus inherits the debugging support of Java.
In Eclipse, the debugging for Java is almost as good as the debugging support for C#
in Visual Studio. Eclipse also offers an equivalent functionality to the Edit & Continue
feature from Visual Studio which is called Hotswap Bug Fixing. The differences in the de-
bugging support mainly relate to parallel programming scenarios and are therefore mostly
unimportant for model transformations.

However, reviewing an objects structure via queries is not always a good way of under-
standing an objects structure. Thus, SDMLib also supports a generic dump operation
that operates on model objects and the transformation patterns and it can dump the mod-
els and the transformation files into dot files that can be rendered by GraphViz4, a tool
to visualize graphs. As this offers a visual representation of the model transformation,
such visual representations can help the developer to debug the problem as potential flaws
are uncovered more easily. The same applies to models, so developers can set a breakpoint
and create a dump for a model at a specific time in the model transformation. This helps
to inspect the state of the model during debugging more easily.

This visualization support of the model transformation and the models brought SDMLib
the award for the best debugging support.

EMF-IncQuery

The EMF-IncQuery solution is divided among three different transformation languages.
EMF-IncQuery is responsible to specify the patterns for the reduction process declara-
tively. This part is impossible to debug for its declarative nature. The declarative way of
programming does not have a clear execution semantic attached that could be observed
via a debugger. However, the orchestration that is done with Java as well as the actual
code executed for these patterns specified in Xtend can be debugged with the full tool
support that is provided by the Eclipse IDE.

However, EMF-IncQuery allows to take snapshots of a model and load these into a query
explorer, so that transformation developers can review where pattern would be applicable
on this particular snapshot. This can be seen as a debugging support for a declarative
language.

Conclusion

The comparison shows that NTL has a strong debugging support in terms of following
the execution flow. However, it lacks the ability to visualize the models and the model
transformation. Unlike many of the other model transformation languages, NTL cannot
benefit from the rich tool support built around the modeling framework, such as available
for EMF. Model visualizations are more closely related to the modeling environment but
they also have a string impact to model transformations built on top of these modeling
frameworks. However, this yields a nice portion of future work to enhance the model
visualization abilities of NMF.

A visualization of the model transformation is actually even possible with the existing
tools, by utilizing the Visual Studio Code Map feature (see chapter 11). However, this
possible application of the tool support was only discovered after the TTC.

4http://www.graphviz.org/

140

http://www.graphviz.org/

10.6. Validation 141

10.6.1.2. Refactoring support

The refactoring support of NTL has been discussed in section 8.2, already. Same as for the
refactoring support, the solution paper did not contain any notes on refactoring support.
For readers not familiar with C#, this probably resulted in a quite low ranking for the
NMF solution.

Fortunately, this could be clarified at the TTC conference and brought the NMF solution
an award for the best refactoring support. The results for the perceived refactoring support
of the solutions participating in the PN2SC case are shown in figure 10.8. The results show
that NMF has the best refactoring support, closely followed by SDMLib.

Figure 10.8.: The perceived refactoring support as collected at the TTC conference for the
PN2SC case

FunnyQT

As admitted on the TTC conference, FunnyQT and also its host language Clojure do not
have any refactoring support. However, the Clojure editor has syntax-highlighting that
can ease refactoring a bit. This is probably the reason that FunnyQT has been rated
with better refactoring support than e.g. UML-RSDS.

UML-RSDS

In the solution paper, the authors state that UML-RSDS does not have a tool support
for refactoring operations. The presentation also did not mention any refactoring support.
Indeed, the presentation did not show how the transformation rules are set.

SDMLib

As SDMLib is an internal DSL for Java, it inherits the refactoring support from Java.
However, some parts of SDMLib make the usual refactoring operations inappropriate.
As an example, a local variable can easily be renamed by Eclipse, but Eclipse does not
know that the name of a pattern object is also encoded in the WithPatternObjectName

parameter that also has to be changed. Thus, the refactoring support inherited from
Eclipse is limited through the internal DSL.

EMF-IncQuery

Much like the debugging support, the refactoring support of the EMF-IncQuery solution
is dependent on the language. The Java part has the refactoring support built in Eclipse
for any Java code. Xtend and EMF-IncQuery inherit the refactoring support of XText,
only, which is very limited. However, the basic but very important refactoring operation
to rename artifacts is supported in XText (and thus in Xtend and EMF-IncQuery).

141

142 10. TTC Petri Nets to State Charts case study

Conclusion

The NMF solution actually convinced the committee of the TTC to provide the best
refactoring support. This is a consequence of the way how NTL is built on top of C#
and the rich refactoring support provided for C# by Visual Studio and further add-ins,
such as ReSharper. As C# is a mainstream language and statically typed, the refactoring
support is possible (because of the static typing) and maintained by a large development
team.

On the other hand, it is also NTL whose design allows to take advantage of these refac-
torings. This is in contrast to e.g. SDMLib that cannot properly take advantage of e.g.
the rename refactoring provided for Java by Eclipse because the name is also encoded as
a string parameter to the WithPatternObjectName method.

10.6.2. Consistency

NMF

The NTL solution mainly consists of the initialization created with NTL and a reduction
part implemented in general purpose code. However, the integration of the general purpose
part is seamless. Furthermore, the tasks that are implemented with general purpose code
are clearly separated from the initialization. Thus, the solution is very consistent.

FunnyQT

Similar to the NMF solution, the FunnyQT solution also consists of of an initialization
part and a reduction part that are both implemented in FunnyQT but with different
parts of it. The initialization uses mappings to transform the initial Petri Net into an
initial State Chart. Here again, the separation is very clear as the purpose for mappings
is strictly restricted to initialization. Thus, the solution is also very consistent.

However, the difference between the mapping API of FunnyQT and the general purpose
solution is not as big as in the NMF solution. This is due to the more concise mapping
language introduced by FunnyQT that does not differ too much from the general purpose
part. In the NMF solution, the general purpose part syntactically looks very different to
the general purpose part. A reason could be that any functions in Clojure are compiled
into classes by default, which is not true for C# method (that are compiled to methods).
As the transformation rules in NTL are also compiled to classes, the syntax for them
must differ from the usual syntax for methods. In Clojure, the mapping API is not too
much different compared to the general purpose part, as also the general purpose part is
compiled to classes.

UML-RSDS

As discussed in section 10.4.2, the definition of the post-condition is not consistent with
propositional logic. This is specifically important as the solution authors stress the easy
and concise way to specify the model transformation through predicate logic. The fact
that the UML-RDSD solution uses this inconsistency for their transformation (as this is
the way how the name of a resulting name State Chart state is set for an OR-rule), the
term of consistence has to be reconsidered for this case. As a reason, the UML-RDSD
solution is consistently using this inconsistency. However, as the solution is based on an
inconsistency, the solution is rated as having a poor consistency.

142

10.6. Validation 143

SDMLib

The SDMLib solution uses its story patterns for both initial transformation as well as
reduction. However, the nested sub-patterns look quite different, as the story patterns
for the reduction require nested negative application patterns, whereas the initialization
patterns are rather simple. As the very same technology is used throughout the whole
model transformation, the SDMLib solution is the most consistent one.

EMF-IncQuery

The EMF-IncQuery solution uses three different languages for the Petri Nets to State
Charts case: EMF-IncQuery itself, Xtend and Java. In the solution, EMF-IncQuery
is used to specify the patterns when a rule is applicable. The engine then identifies occur-
rences of the patterns and trigger other reduction parts written in Xtend to perform the
actual task involved in the rule. Java is used to wire up these triggers and orchestrate the
solution.

While it is very clear to use EMF-IncQuery to specify patterns (as the language is
built for this purpose), the imperative parts of the rule could have also be written in
Java. Although there are reasons to use Xtend (e.g. better conciseness), the usage of a
further language introduces a further programming style and thus yields a less consistent
solution. Furthermore, the separation between Xtend and Java is not obvious. Thus, the
solution is relatively inconsistent, as three different programming styles (in three different
programming languages) are used.

Conclusion

The most consistent solution is the SDMLib solution as it uses the same programming
style for both initialization and reduction rules. It is followed up by the FunnyQT and
NMF solution that each apply two different programming styles. However, FunnyQT is
a bit more consistent, as the syntax of these programming styles is closer to each other.
EMF-IncQuery is relatively inconsistent, as it incorporates three different programming
languages where the separation is not so clear. The UML-RSDS solution can be seen
as the most inconsistent solution, as it is based on inconsistencies in way how the engine
interprets the predicate logic from the transformation rules.

10.6.3. Conciseness

Solution NLOC

FunnyQT 91

UML-RSDS 96

NMF (source code) 250

NMF (based on IL) 180

SDMLib 220

EMF-IncQuery 578

Table 10.1.: NLOCs of the Petri Nets to State Charts case solutions

Unfortunately, when the conciseness analysis was written, the SHARE demos were unavail-
able. Thus, the evaluation can only be done based on the conciseness evaluation during
the open peer reviews, counted by Tassilo Horn (see table 10.1). According to this data,
the most concise solutions were FunnyQT and UML-RSDS with about 90 NLOC each.
The second most concise solutions were NMF and SDMLib with about 230 NLOC each.
The least concise solution was EMF-IncQuery with 578 NLOCs.

143

144 10. TTC Petri Nets to State Charts case study

Similar to the Flowgraphs case, the LOCs computed by Visual Studio are also included
in the table. As a much bigger proportion of the code is usual general purpose code, the
numbers for NMF are much closer together than in the Flowgraphs case.

This may be surprising as the patterns specified in EMF-IncQuery are very concise.
However, the orchestration efforts in this solution seem to overweigh these advantages also
in terms of the solution conciseness.

The NMF solution again suffers from the verbosity of NTL. Other mapping languages
are more concise. However, the general purpose part is quite concise - even remarked in
the peer reviews. As a result, the difference between NMF and FunnyQT is a little less
than in the Flowgraphs case where the solutions were apart by a factor of 3.

10.6.4. Understandability

The results for the understandability of the solutions of the PN2SC case are shown in
figure 10.9. The results are based on 36 responses to the questionnaire of the PN2SC case
at the TTC conference5.

Figure 10.9.: The results of understandability and conciseness for the PN2SC case

The results indicate that the NMF solution has the second-worst understandability and
conciseness. EMF-IncQuery is rated for having the best combined understandability
and conciseness. As a reason, the presentation of the EMF-IncQuery solution focussed
on the pattern specifications that are indeed written very concisely. As the questionnaire
collect the peceived conciseness and understandability, the solution appearently got very
good marks for its conciseness. As a reason, the EMF-IncQuery solution applies an
external language that is tailored to such pattern specifications while the NMF solution
applies general purpose code for the patterns that are no way tailored to the solution. On
the other side, UML-RSDS also has a biased rating as it possibly got downgraded as the
presentation failed to introduce how the concise transformation rules are specified.

However, the fact that SDMLib and FunnyQT were given better ratings than NMF is
suprising. The SDMLib solution may have gained some points from the visualization of its
transformation rules. Appearently such a visualization improves not only the debugging
but also the understandability of such a solution. The code in SDMLib is rather verbose
and hard to read and thus is unlikely to have caused a good understandability. A roughly
similar tool support is available for NMF Transformations via the Code Map fea-
ture of Visual Studio but this support has only been detected after the TTC conference.

5http://goo.gl/yU3as

144

http://goo.gl/yU3as

10.7. Conclusions 145

However, the transformation languages of NMF Transformations and SDMLib are
also quite different. Where NMF Transformations rather specifies mappings, SDM-
Lib like EMF-IncQuery specifies patterns that may occur multiple times. After all, the
inappropriate abstractions of transformation rules that may only be executed once made
the NMF solution solve the reduction in general purpose code. Thus, the abstractions
from SDMLib seem to be better suited for this case and may therefore deserve the better
understandability and conciseness ranking.

FunnyQT may have taken most profit from its conciseness. Like NMF Transforma-
tions, FunnyQT does not have suitable abstractions for pattern specification and thus
solves the reduction with general purpose code. However, the built-in mechanisms of the
Clojure language seem to suffice that the lack of suitable abstractions is concealed by the
concise general purpose specification of these patterns. What FunnyQT does is to iter-
ate functions that perform the pattern tasks until they return false and thus no more
patterns are applicable. It may also have impressed the attendees of the TTC with its
boosting performance. At the TTC conference, the FunnyQT solution was the fastest
solution by far.

Another factor that may serve to support the assumption of the tool support helping
to imropove the understandability is that a similar tool support has recently been pre-
sented for QVT [RNHR13] where it indeed helped to improve the maintenance of model
transformations.

Summarizing the discussion, NMF Transformations seems to lack in conciseness and
understandability of the pattern specification due to a lack of suitable abstractions. Fur-
thermore, the NMF did not specify the patterns in general purpose code as concisely as
the FunnyQT solution and suffers from the lack of tool support to improve the under-
standability. However, a similar tool support is available but has not been detected by
the time of the TTC conference. Although this biases the results a bit, NMF Transfor-
mations still seems to lose the understandability due to inappropriate abstractions. A
solution may be to allow transformation rules to be executed multiple times and use the
relational extensions to specify these patterns. However, this is a portion of future work.

10.7. Conclusions

The Petri Nets to State Charts case contained a rather unusual model transformation task,
an input-destructive model transformation that consists of an initialization and a reduc-
tion part. The abstractions of NMF Transformations do not fit these requirements.
As a result, the reduction part has been solved by general purpose code. This solution
demonstrates how arbitrary general purpose code can easily be included in a model trans-
formation written with NMF Transformations. The approach of integrating general
purpose code whenever the model transformation abstractions provided by NTL make it
a very flexible approach.

Similar to the Flowgraph case, the Petri Nets to State Charts case also showed the good
tool support provided for NTL. Although also other internal DSLs could benefit from the
tool support of the IDE, examples like SDMLib show that not all internal MTLs can make
use of the provided refactoring support as NTL does. On the other side, also SDMLib
extended the tool support from Eclipse by providing a custom model visualization. This is
a useful improvement for debugging. Possibly a similar tool support also served to improve
the understandability of SDMLib.

After all, the goal of the different solutions seems to be quite different. While the goal
of the NMF solution was to demonstrate how general purpose code could be integrated,
other transformation languages mostly concentrated on their pattern matching abilities

145

146 10. TTC Petri Nets to State Charts case study

and wanted to show how these abilities also apply on unusual model transformation tasks.
The lack of such abstractions lead to a low understandability of the NMF Transforma-
tions solution. Thus, the case study shows a clear limit of the usage of NMF Trans-
formations.

146

11. Code generator for OPC UA

This chapter introduces the case study of a code generator for OPC UA, conducted at
ABB Corporate Research, Ladenburg, Germany. At first, section 11.1 briefly introduces
OPC UA, specifically its Address Space Model. Next, section 11.2 introduces the code
generating mechanism that is to be implemented, before section 11.3 explains the planned
validation for this case study. Section 11.4 presents the solution of this case study using
NMF. Section 11.6 evaluates the solution with regard to the evaluation criteria from
section 11.3.1. This validation is partially done against general purpose solutions. Finally,
section 11.7 concludes this chapter.

11.1. OPC UA

In the automation domain, it is of great importance to exchange data with the devices
that analyze or handle an industrial process (e.g. reading a temperature or pressure values,
position valves or start motors). For this purpose, the OPC Foundation1 (Open Platform
Communication) has released the OPC Unified Architecture standard (OPC UA2). An
introduction can be given by [MLD09]. One of the biggest improvements to its predecessor
Classic OPC (besides the platform independence) is the introduction of what OPC UA
calls the Address Space Model.

This Address Space Model is a way to describe a syste and its metadata. For this purpose,
the device data is represented in a full meshed network of nodes with different types. The
model is structured by object type nodes that define the minimum structure for other
instance nodes. It can be considered as a loosely coupled type system. However, unlike
most type systems built into programming languages that exactly define the layout of
objects in memory, objects in OPC UA are represented in nodes with references (although
these nodes eventually have a memory representation). Instead of specifying the exact
layout of these nodes, object types in OPC UA only specify constraints to these nodes,
such as they must have certain references to other nodes.

An example of such types is depicted in figure 11.1. The ObjectType MotorType defines
the structure of its instances. Although the only instance Motor1 in this example has
exactly the same structure, its structure could be slightly different. Other than fields of
an object that explicitly belong to this object, nodes in OPC UA may be referenced by

1https://www.opcfoundation.org/
2https://www.opcfoundation.org/UA/

147

https://www.opcfoundation.org/
https://www.opcfoundation.org/UA/

148 11. Code generator for OPC UA

Figure 11.1.: A motor type in the OPC UA Address Space Model [MLD09]

148

11.2. The model transformation in theory 149

arbitrarily many references. These references are typed with ReferenceTypes. It is also
possible to create own reference types.

The object type only defines constraints to the structure of its instances. Thus, unless the
motor type explicitly disallowed this, a motor instance may have several configurations
assigned to it. The OPC UA standard also provides means to declare new variable types
or data types. Data types can have an inheritance hierarchy and can be arrays of arbitrary
dimensions (including ”at least one”) or scalars. Furthermore, OPC UA also supports to
specify enumerations. Instances can be marked as event sources of an object.

With this Address SPace Model, OPC UA defines a flexible way to communicate between
devices. A device can identify any object on another device via its node id. The necessary
observations or operations as e.g. measuring a temperature or starting a motor are simply
done by requesting the value for a specific node or invoking a method node. Such a
method node represents an operation of a certain object, e.g. to start a certain motor.
The standard also allows to exchange the metadata of this device types.

11.2. The model transformation in theory

Due to its flexibility, the Address Space Model of OPC UA is great to specify the data
that can be obtained from a server. However, if developers want to use this interface for
their applications, the flexible object layout is not desirable. Instead, developers usually
want to fix the object layout by defining classes in an object-oriented design with a fixed
object layout that they can work with. Code generators that can do this task already
exist. However, there are a couple of different SDKs for OPC UA and all these different
SDKs have their own code generators that generate code in one language that is specific
to this particular SDK.

To reduce the duplication of code, it is desirable to have a code generator that can be
easily adopted to the case-specific requirement, e.g. the used SDK and creates code in
multiple languages. In a first step, a basic code generator is created that is not specific to
any SDK. This code generator is not intended to be used directly. Instead, it is designed
to allow easy extensibility for the case-specific requirements.

Fortunately, .NET provides a code metamodel independent from the programming lan-
guage. This code metamodel is represented by the classes of the System.CodeDOM3 names-
pace. Various code generators exist that generate code from such code models in different
languages such as C#, Visual Basic.NET, C++ and J#. Being a Java port, J# provides
a similar syntax to Java, so that this code generator may also be used to emit Java code.
However, in case of Java, the code generator should behave differently, as Java uses differ-
ent naming conventions and does not have concepts like properties or events. Thus, in this
case, the code generator must create a model with separate getter and setter methods and
avoid creating events. As NMF Transformations operates on POCOs, it is possible
to use the System.CodeDOM classes as the target metamodel for a M2M-transformation
written with NTL.

The intended scenario is that the code generator that is currently agnostic of the used SDK
is extended by another code generator that is specific to the used SDK and adds the func-
tionality specific to the SDK. The code generator creates a model of the System.CodeDOM

namespace which is then generated to code by the code providers for the intended language.
This procedure is illustrated in figure 11.2.

Some SDKs might require the generated types to eventually inherit from a specific base
class. With other SDKs it might be possible to retrieve the references of an object directly

3http://msdn.microsoft.com/en-us/library/system.codedom.aspx

149

http://msdn.microsoft.com/en-us/library/system.codedom.aspx

150 11. Code generator for OPC UA

Figure 11.2.: The intended code generator at a glance

from the server and possibly caching them locally. This can be achieved by downloading
these referenced objects the first time a reference is accessed (lazy loading). Such an access
is easy to track via property getter methods. Thus, the code generator must provide easy
means to extend the code generated for a referenced object.

However, designing the code generator, it is yet unclear in which scenarios the code gen-
erator might be used. Instead, the idea is to provide a basic implementation that is to
be adopted for the scenario. The problem here is that it is unclear where the the code
generator is going to be extended, i.e. it is unclear where to set extension points.

11.3. Planned validation

This section presents the planned validation for the ABB case study.

11.3.1. Evaluation criteria

For the code generator case study, the validation goals are as follows:

• Understandability: Unlike the first two case studies, the code generator for OPC
UA is an example of a case where most model transformation languages are in-
feasible as they cannot operate on plain CLR objects. As a consequence, the re-
sulting code model of other model transformations would have to be converted to
System.CodeDOM or otherwise separate code generators would have to be written
per language that is to be supported. Thus, this scenario would otherwise be dealt
most likely with general purpose code, i.e. plain C#. As the prospected users of
the code generator are familiar with C# but not necessarily with model transfor-
mation languages, it is important to evaluate the understandability of the solution.
This consists of the understandability of NMF Transformations as well as the
understandability of the model transformation. This is done by using questionnaires
among the prospected users of the code generator.

• Modifiability: The code generator case includes a clear extensibility scenario,
namely to support new SDKs to generate code that makes use of the features pro-
vided by this new SDK which is why the extensibility of the code generator is so
important. Existing code generators for OPC only have support for a specific SDK
and have been shown that they are difficult to extend. Thus, they lack usability
in many scenarios. Hence, it is very important to evaluate the extensibility of the

150

11.3. Planned validation 151

code generator utilizing NMF Transformations. As extensibility is also an aspect
that is hard to measure, this evaluation is also done with questionnaires among the
prospected users of the code generator.
Furthermore, as the code generator is created for usage in industry, it is particularly
important to achieve a good test code coverage of the model transformation. As a
consequence, an important evaluation goal is to observe how the model transforma-
tion can be tested by means of unit tests. Multiple metrics exist that measure the
coverage of a source code by test code such as Covered Blocks or Covered Lines.

• Reusability: The extension scenarios also include that the code generator is even
specifically designed to be reused. In the implementation, the code generator can
show that it is possible to write reusable model transformations with NTL. However,
as there are no solutions with other transformation languages, no assumptions can be
made to compare the reusability support of the model transformation when compared
to other transformation languages.

However, as the case study lacks of other concrete solutions to compare to, it is not mean-
ingful to validate the solution in terms of conciseness or consistency. The debugging and
refactoring support has already been validated in comparison to other model transfor-
mation languages and thus, there is no point in reviewing the support again, especially
because the support cannot be compared with other solutions in this case study, as the
case study is not solved by any other transformation language.

11.3.2. Evaluation procedure

The testability is evaluated by covering the solution with an as good as possible test
code coverage and a reflection how the schematic this test code coverage could have been
achieved.

The remainder criteria are evaluated using questionnaires among prospective users of the
code generator. As a reason, these criteria are only measurable through perception. In
the remainder of this section, the questions of the evaluation sheet are presented together
with their intention. The original evaluation sheet can be found in the appendix (see figure
E.1).

How much experience do you have with model-driven software development?

This question is used to gather information on the background of the respondents. Unlike
the attendees of the TTC that typically have long lasting experience with MDE, the
prospected users of the code generator are unlikely to have such a strong background in
MDE.

However, the background is important as a strong background in MDE is likely to make it
easier to understand NMF Transformations. It uses concepts that exist in similar form
in other transformation languages as well. Thus, knowing the background is important to
understand the responses of the later questions.

Which transformation languages were you using before?

Again, this question is closely related to understand the responses to the understandability
questions that follow.

How understandable was the presentation of the code generator?

As the users only have the solution presentation to understand the code generator, this
implicitly collects the understandability of the model transformation in a given amount of
time.

151

152 11. Code generator for OPC UA

How understandable was the presentation of NMF Transformations?

Like the last question, the evaluation assumes that the users only know NMF Transfor-
mations from the presentation of the code generator. Thus, the question also implicitly
collects the understandability of NMF Transformations in a given amount of time. It
can be suspected that NMF Transformations is more understandable for developers
used to MDE and also used to other transformation languages like QVT or ATL. On the
other hand, it will be interesting to see how the understandability of NMF Transfor-
mations correlates with the understandability of the code generator.

Are you planning to use the code generator?

The goal of this question is to determine whether the prospective users really plan to use
the code generator presented in this case study. Answers to this question can be interpreted
as how convincing the presentation and thus how convincing NMF Transformations is
to prospected users.

If so, please rate the effort to adopt the code generator for your scenario!

The requirements for a code generator are different for different business units, which has
been accounted for with the explicit requirement for extensibility. However, this question
asks how deep the necessary adoptions would be for a usage in the respective business
unit.

Please estimate the efforts for the adoptions from the previous question in
relation to a general purpose solution!

This question is to gather estimates on the effort of such adoptions. Thus, it collects data
on the extensibility of the code generator because of its structure, which implicitly yields
a proposition on the reusability of NMF Transformations.

How does NMF Transformations affect the following quality attributes com-
pared with a general purpose solution?

This second last question aims for estimations on the quality attributes. The quality
attributes that are asked to rate are

• Understandability

• Modifiability

• Conciseness

• Consistency

• Reusability.

This is probably the most difficult question to answer. Thus, the answers are assumed to
be less reliable. As a consequence, the results of this question are only used to doublecheck
the whole evaluation and to show trends. A statistical analysis is not meaningful.

Please feel free to add any comment on the solution or the presentation!

This free-form question is to collect more general remarks that do not suit to any of the
other questions. The answers to this questions will not be presented in this thesis.

152

11.4. Generating code with NMF Transformations 153

11.4. Generating code with NMF Transformations

From the large, the code generation seems like a typical model transformation task.
The model transformation would transform UA type nodes into type declarations from
System.CodeDOM. To reduce the dependency to any SDK, the code representation for the
UA node set has entirely been generated from the XML Schema definition by using the
xsd.exe tool included in the .NET SDK. Thus, the code generator has been designed as a
M2M-transformation with 24 transformation rules where the models are plain CLR objects
(POCOs). Most of these rules are visualized in figure 11.3.

What the diagram shows are the connections between the members of the CodeGenerator

class that implements the code generator. Furthermore, the helper methods from the
CodeGeneratorHelper class have been added to the diagram. However, to simplify the
diagram a bit, some members like constructors have been removed while others have been
moved hiding the separation between CodeGenerator and CodeGeneratorHelper.

As usual in NTL, the transformation rules used by the CodeGenerator are public nested
classes. An arc between two rules is created as soon as a transformation rule uses another
transformation rule either for dependencies (also reversed ones) or for tracing. However,
some dependencies are created indirectly (moved to helper methods) and thus not visible
in the diagram. Improved tool support that takes this into account would be desirable.

Diagrams as figure 11.3 can automatically be generated by Visual Studio by using the
Code Map feature. This feature shows how the members (including nested classes) of
the type CodeGenerator interact as an interactive DGML file (Directed Graph Modeling
Language). Visual Studio also includes a row of automatic layout algorithms that operate
on DGML. The diagram in figure 11.3 has only been modified by deleting some members
like the constructor from the diagram and improving the layout for the master thesis
manually.

The diagram also has further functionality that may turn out particularly useful for model
transformation development. As an example, circular references can be detected and
highlighted in red, or hubs can be identified. The code map also allows to jump to the
code where an element is defined and can analyze all references (possibly loading these
objects into the graph).

An example of these model transformation rules can be seen in listing 11.1 where the
transformation rule to transform an UA object into a member field is presented. The
functionality of the transformation rule is further broken down to smaller units that are
handled in smaller methods. In this way, NMF Transformations serves to have to
modularize the code. This structure can be queried with the tracing functionality. As
in listing 11.1, the transformation rule ObjectNode2Field uses the trace functionality to
obtain any model element that is not one of the input arguments.

Furthermore, the ObjectNode2Field rule declares the methods containing the broken down
functionality as virtual methods. This yields an extension point as derived code generator
classes can easily override the behavior e.g. that all fields are rendered as collections by
default.

1 public class ObjectNode2Field : TransformationRule<UAObject ,
CodeTypeDeclaration , CodeMemberField>

2 {
3 public override void Transform (UAObject objectNode ,

CodeTypeDeclaration declar ingType , CodeMemberField f i e l d ,
ITransformationContext context)

4 {

153

154 11. Code generator for OPC UA

Figure 11.3.: The rules of the code generator and their interactions

154

11.4. Generating code with NMF Transformations 155

5 var gen = Transformation as CodeGenerator ;
6 f i e l d .Name = gen . GetFieldName (objectNode) ;
7 var typeDef = CodeGeneratorHelper . GetReferences (objectNode ,

KnownReferences . HasTypeDefinit ion , true , context) .
F i r s tOrDefau l t () ;

8 var type = CodeGeneratorHelper . ResolveType (typeDef , context) ;
9 i f (I s C o l l e c t i o n (objectNode))

10 {
11 SetCol l ect ionType (objectNode , declar ingType , f i e l d , context ,

type) ;
12 }
13 else
14 {
15 f i e l d . Type = type ;
16 }
17 i f (dec lar ingType != null && ! dec lar ingType . I s I n t e r f a c e)
18 {
19 dec lar ingType . Members . Add(f i e l d) ;
20 }
21 }
22
23 private void SetCol l ect ionType (UAObject objectNode ,

CodeTypeDeclaration declar ingType , CodeMemberField f i e l d ,
ITransformationContext context , CodeTypeReference type)

24 {
25 f i e l d . Type = GetCo l l e c t i on Inte r f aceType (objectNode , type) ;
26 var i n i tExpr = G e t C o l l e c t i o n I n i t i a l i z a t i o n E x p r e s s i o n (objectNode

, type) ;
27 i f (in i tExpr != null)
28 {
29 var con s t ruc to r = context . Trace . Reso lveIn (Rule<

TypeNode2DefaultConstructor >() , dec lar ingType) ;
30 i f (con s t ruc to r != null)
31 {
32 cons t ruc to r . Statements . Add(new CodeAssignStatement (new

CodeFie ldReferenceExpress ion (new
CodeThisReferenceExpress ion () , f i e l d .Name) , in i tExpr)) ;

33 CodeGeneratorHelper . S e t C o l l e c t i o n F i e l d (f i e l d) ;
34 }
35 }
36 }
37
38 protected virtual CodeTypeReference GetCo l l e c t i on Inte r faceType (

UAObject objectNode , CodeTypeReference baseType)
39 {
40 return new CodeTypeReference (typeof (I C o l l e c t i o n <>) . FullName ,

baseType) ;
41 }
42
43 protected virtual CodeExpression

G e t C o l l e c t i o n I n i t i a l i z a t i o n E x p r e s s i o n (UAObject objectNode ,
CodeTypeReference baseType)

155

156 11. Code generator for OPC UA

44 {
45 return new CodeObjectCreateExpress ion (new CodeTypeReference (

typeof (L is t <>) . FullName , baseType)) ;
46 }
47
48 public virtual bool I s C o l l e c t i o n (UAObject objectNode)
49 {
50 return true ;
51 }
52
53 public override void Regi s terDependenc ies ()
54 {
55 MarkInstant iat ingFor (Rule<InstanceNode2CodeMember>()) ;
56
57 var gen = Transformation as CodeGenerator ;
58 i f (gen . GenerateProper t i e s)
59 {
60 Cal l (Rule<InstanceNode2Property >()) ;
61 }
62 else
63 {
64 Cal l (Rule<InstanceNode2GetMethod >()) ;
65 Ca l l (Rule<InstanceNode2SetMethod >()) ;
66 }
67 }
68 }

Listing 11.1: The rule to transform object nodes into fields

At some points, the transformation tends to be quite complicated. One prominent problem
is that the object nodes in a UA node set can be used multiple times in different contexts.
As an instance node can be referenced from arbitrarily many other nodes, it may represent
properties of arbitrarily many types. However, the code generation for these types may
differ. As an example, an object type may have a HasEventSource reference to this instance
node while other object type nodes referencing that same instance node only have the
HasComponent reference set. In the first case, an event has to be created that informs
clients when the property changes. As a result, the code generation of the property depends
on the existence of such an event to inform possible clients. As a consequence, members
must be generated from tuples of instance nodes and their type node contexts or their
resulting type declarations, respectively. To simplify the syntax in the transformation
rules for the members, the latter version is used in the presented code generator.

A further problem is that the UA node set model is only loosely coupled, i.e. a node does
not have a true reference to its referenced nodes as the reference only knows the id of the
referenced node. To resolve this reference, one must look up in the node set to search for
the node with the same node id. As the UA nodes do not have a reference to the node
set they reside in, this requires the transformation context. To simplify this procedure,
a separate transformation rule is called for each node and creates a trace entry for the
NodeId2Node rule to identify a node with its node id via the trace. This is done in the
Node2TraceEntry rule depicted in figure 11.2.

1 public sealed class Node2TraceEntry : InPlaceTransformationRule<
UANode>

2 {

156

11.4. Generating code with NMF Transformations 157

3 public override void Regi s terDependenc ies ()
4 {
5 TraceInput (Rule<NodeId2Node>() , n => n . NodeId) ;
6 }
7 }

Listing 11.2: The Node2TraceEntry rule that creates a trace entry for each transformation

However, this leads to sophisticated dependencies for transformation rules transforming
instance nodes to members. As these dependencies are required at multiple rules, this
functionality is moved to a helper class CodeGeneratorHelper. The code for this helper
method is presented in listing 11.3.

1 public stat ic void CallForEachReferenceOfObjectType<TNode , TCode
>(ru le , r e f e r e n c e I d)

2 where TNode : UANode
3 where TCode : CodeObject
4 {
5 var nodeId2Node = r u l e . Transformation . GetRuleForRuleType (. . .) ;
6 var objectTypeNode2TypeDeclaration = r u l e . Transformation .

GetRuleForRuleType (. . .) ;
7
8 r u l e . CallForEach (objectTypeNode2TypeDeclaration ,
9 s e l e c t o r : (Computation c) => c . Context . Trace . ResolveManyIn (

nodeId2Node ,
10 CodeGeneratorHelper . GetReferences (c . GetInput (0) as UANode ,

r e f e r e n c e I d , true , c . Context))
11 . OfType<TNode>()
12 . PairWithConstant (c . Output as CodeTypeDeclaration) ,
13 needOutput : true) ;
14 }

Listing 11.3: A helper method to set more sophisticated dependencies

Instead of specifying the selection method based on the inputs, this dependency is specified
directly using the plain computation. As a consequence, the dependency must specify
whether the selection method requires the output of the computation to be set. In this
case, the member transformation rule is to be called based on the computations of the
TypeNode2TypeDeclaration rule. These computations are aware of their context and
thus, this context can be used to acquire the dependent nodes with the specified reference.

However, the fact these dependency specification is moved to a separate class, the usage of
this helper functionality hides the dependency on both transformation rules NodeId2Node
and TypeNode2TypeDeclaration. Thus, the diagram from figure 11.3 is actually wrong
in the sense that it does not show the dependencies created with this helper functionality.
This affects all rules that use the helper functionality, i.e. all transformation rules that
transform an instance node to a member object.

As an example of how the transformation rules work, let look on the InstanceNode2Property
rule. By expanding the node representing the rule in figure 11.3, we can obtain the inner
structure of the transformation rule as shown in figure 11.4.

The structure shows that the InstanceNode2Property rule consists of further methods
that split the work done by this rule further. This is done to override this behavior
separately in extensions. As a result, developers can override the behavior how code is

157

158 11. Code generator for OPC UA

Figure 11.4.: The inner structure of the InstanceNode2Property rule

generated for the getter and setter methods but leave everything else as it. Listing 11.4
shows an example of how this can be accomplished by the introduction of a new trans-
formation rule NewInstanceNode2Property that overrides the InstanceNode2Property

rule.

1 public class ExtendedCodeGenerator : CodeGenerator
2 {
3 [Overr ideRule]
4 public class NewInstanceNode2Property : InstanceNode2Property
5 {
6 protected override void SetStatements (. . .)
7 {
8 . . .
9 }

10 }
11 }

Listing 11.4: An example how a code generator extension can override the code generation
for properties

However, by overriding the RegisterDependencies method, an extension cannot only
override the code generation for a property, but also when a property is created at all.
For example, if a developer wished to create a property also for every Organizes reference,
this could easily be done by overriding the RegisterDependencies method and call the
above discussed helper function with the reference id of the Organizes reference (which is
”i=35”). However, overriding the RegisterDependencies method must be done with care,
especially if the base method is not called (inheritance is still a white-box technology!).

Overriding an existing transformation rule may not always be sufficient to fulfill a changed
set of requirements. However, it is still possible to add new transformation rules by includ-
ing them again as public nested classes of an inherited code generator class. Using reversed
dependencies, these new transformation rules may hook in anywhere in the transformation.

Together with the simple extensibility mechanism of overriding the member methods of
the CodeGenerator class, this yields a three-stage-extensibility of the code generator:

158

11.5. Testing 159

1. Override member methods: The easiest way of extensibility is to override the
member methods of the CodeGenerator class. This is of course limited to the virtual
member methods of this class. These methods mainly serve to implement the naming
conventions for the code generator.

2. Override transformation rules: For adoptions beyond the (quite narrow) limits
of overriding member methods, one can override individual transformation rules.
In this way, the behavior of these rules can be changed. As both the Transform

and the RegisterDependencies method are not sealed in any transformation rule,
the entire transformation rule (besides its signature) can be changed. However,
most transformation rules also have virtual methods that allow a more fine grained
extensibility, by e.g. only overriding the procedure of how to set the statements for
a method.

3. textbfNew transformation rules: For further adoptions, entirely new transformation
rules can be added. These transformation rules can be wired up by either overriding
the RegisterDependencies method or by using reversed dependencies. These new
transformation rules of course can take advantage of the tracing functionality of all
transformation rules.

11.5. Testing

In many cases, testing for model transformations is achieved by a black-box procedure.
Thus, models must be derived that test a transformation rule as isolated as possible.
However, in many cases, the input metamodels have a high degree of cohesion, making it
impossible to transform tiny models just large enough to trigger a certain model transfor-
mation rule.

However, NTL has dedicated support for model transformation testing. This support is
achieved by a mock context that does not automatically execute dependencies. Other
than the usual transformation context, the mock context also provides a simplified access
to the computation list. As a result, this mock object can be used to simulate that a
certain object has been transformed with a given transformation output (see section 7.4.8
for details).

With this procedure, it was possible to achieve a full test case coverage (in Release mode;
in Debug mode, there are some blocks not coverable by test code). MSTest has been used
as testing framework. However, the testing support of NTL is not limited to this unit test
framework, but can also be used with other test frameworks.

Visual Studio provides a good tool support for testing. All tests can be run at once through
the test explorer that shows the results. Projects can be configured such that the tests run
after any build. Furthermore, the Continuous Integration features of the Team Foundation
Server allow to use tests for code check-in policies, i.e. a code commit may be refused if
the tests fail. Alternatively, the person in charge of the tests may be notified automatically
if a code check-in causes the tests to fail.

The unit testing for model transformation rule is demonstrated by the unit tests for the
ObjectNode2Field rule. This rule is used to transform an OPC UA object and a class
context into a member field. The implementation of this transformation rule (excluding
comments) is shown in listing 11.1.

The transformation rule has been chosen as it contains examples for most of the concepts
included in NTL.

The ways how to create test cases for the solution fundamentally differs for the Transform

and RegisterDependencies method. The following two sections introduce how these

159

160 11. Code generator for OPC UA

methods are tested for the ObjectNode2Field rule and thereby show the schematic pro-
cedure.

11.5.1. Transform

Testing the Transform method with unit tests yields several problems:

• The method relies on the Transformation property to be set to an instance of the
CodeGenerator class as it uses this reference to obtain the name of the newly created
field. Thus, it is not possible to use mock transformation that only consist of few
transformation rules. Thus, an instance of CodeGenerator must be used as the
transformation rule container.

• The calls to the helper methods GetReferences and ResolveType include an access
to the trace functionality of NTL. Thus, the trace must be filled with meaningful
trace entries to allow these helper methods to work correctly.

Furthermore, the test code frequently uses the rule instances within a given CodeGene-

rator object. Thus, these references can also be saved as field of the test class. Next,
the code helper methods require that the aliases from the node set are registered. This
is usually done by the RegisterAliases rule, but as we want to execute as less other
transformation rules as possible, the aliases are set in the initialization of the test class
using the same helper method as the RegisterAliases rule does. The complete code for
the test initialization is depicted in listing 11.5.

1 [T e s t I n i t i a l i z e]
2 public void I n i t i a l i z e ()
3 {
4 codeGenerator = new CodeGenerator () ;
5 codeGenerator . I n i t i a l i z e () ;
6
7 objectNode2Fie ld = codeGenerator . Rule<CodeGenerator .

ObjectNode2Field >() ;
8 instanceNode2Fie ld = codeGenerator . Rule<CodeGenerator .

InstanceNode2CodeMember>() ;
9 typeNode2Reference = codeGenerator . Rule<CodeGenerator .

TypeNode2TypeReference >() ;
10 nodeId2Node = codeGenerator . Rule<CodeGenerator . NodeId2Node>() ;
11
12 context = new MockContext (codeGenerator) ;
13
14 CodeGeneratorHelper . R e g i s t e r A l i a s e s (null , context) ;
15 }

Listing 11.5: The test initialization for the unit tests for the Transform method

With this initialization, a test case can be set up as depicted in listing 11.6. This test case
tests that the transformation rule sets the correct type when the object references to an
object type definition included in the node set (which is the most common scenarios for
objects).

1 [TestMethod]
2 public void ObjectNode2Field Transform KnownType ()
3 {
4 var node = new UAObject () { BrowseName = ”1 : TestName ”} ;

160

11.5. Testing 161

5 var type = new CodeTypeDeclaration () ;
6 var f i e l d = new CodeMemberField () ;
7 var typeNode = new UAObjectType () { NodeId = ”TestID ” } ;
8 var typeReference = new CodeTypeReference () ;
9 node . Re fe rences = new Reference [] {

10 new Reference () {
11 IsForward = true ,
12 ReferenceType = KnownReferences . HasTypeDefinit ion ,
13 Value = typeNode . NodeId
14 }
15 } ;
16
17 context . Computations . Add(nodeId2Node , typeNode . NodeId , typeNode)

;
18 context . Computations . Add(typeNode2Reference , typeNode ,

typeReference) ;
19
20 objectNode2Fie ld . Transform (node , type , f i e l d , context) ;
21
22 Assert . AreEqual (”testName ” , f i e l d .Name) ;
23 Assert . AreEqual (1 , f i e l d . Type . TypeArguments . Count) ;
24 Assert . AreEqual (typeReference , f i e l d . Type . TypeArguments [0]) ;
25 Assert . IsTrue (type . Members . Contains (f i e l d)) ;
26 }

Listing 11.6: Testing the Transform method of the ObjectNode2Field rule

The lines 4 − 15 set up a minimum test model for this scenario. Lines 17 − 18 simu-
late that the node id of the type node has been transformed to the type node and that
this type node has been transformed to the type reference from the appropriately named
variable. These statements complete the test scenario, so that the Transform method of
the ObjectNode2Field rule can be run (line 20). The lines 22 − 25 finally make some
assertions on the expected outcome of the method.

11.5.2. RegisterDependencies

In the ObjectNode2Field rule, the dependencies of the transformation rule depend on the
configuration of the parent CodeGenerator instance. If the code generator is configured to
generate properties, the ObjectNode2Field rule has a dependency to also create a property
for this field. However, if the code generator is configured to not generate properties, a
pair of getter and setter methods is created instead (each using different transformation
rules).

A possible way to test the behavior of the RegisterDependencies method would be to
let the CodeGenerator instance register the rules incompletely and then call the Regis-

terDependencies method in the test. However, this approach is infeasible as it is difficult
to review the dependencies of the transformation rule. Thus, we rather test this behavior
in a black box manner by simulating a computation of the ObjectNode2Field rule and
execute its dependencies explicitly.

Listing 11.7 shows how this is achieved. As the dependencies of the ObjectNode2Field rule
depend on the configuration of the code generator, we cannot use a test initialize this time
but have to insert the initialization code in the test method (lines 4− 10). Lines 12− 14
then set up the test environment. Line 16 explicitly executes the dependencies of this

161

162 11. Code generator for OPC UA

computation that are to be executed after the computation itself (since the dependencies
are call dependencies). In the normal transformation context, these dependencies would
be executed automatically. However, in the mock context, they are not and must instead
be executed separately. Next, lines 18 − 20 fetch the property, getter and setter method
created for this object. Lines 22−24 assert that the computation created for the property
exist, but no getter and setter methods have been created.

1 [TestMethod]
2 public void

ObjectNode2Fie ld Reg i s terRequi rements GeneratePropert i e s ()
3 {
4 var codeGenerator = new CodeGenerator () { GenerateProper t i e s =

true } ;
5 codeGenerator . I n i t i a l i z e () ;
6
7 var objectNode2Fie ld = codeGenerator . Rule<CodeGenerator .

ObjectNode2Field >() ;
8 var instanceNode2Property = codeGenerator . Rule<CodeGenerator .

InstanceNode2Property >() ;
9 var instanceNode2GetMethod = codeGenerator . Rule<CodeGenerator .

InstanceNode2GetMethod >() ;
10 var instanceNode2SetMethod = codeGenerator . Rule<CodeGenerator .

InstanceNode2SetMethod >() ;
11
12 var context = new MockContext (codeGenerator) ;
13
14 var node = new UAObject () ;
15 var type = new CodeTypeDeclaration () ;
16 var c = context . Computations . Add(objectNode2Fie ld , node , type) ;
17
18 context . ExecuteDependencies (c , fa l se) ;
19
20 var property = context . Trace . TraceIn (instanceNode2Property , node

, type) . F i r s tOrDefau l t () ;
21 var getMethod = context . Trace . TraceIn (instanceNode2GetMethod ,

node , type) . F i r s tOrDe fau l t () ;
22 var setMethod = context . Trace . TraceIn (instanceNode2SetMethod ,

node , type) . F i r s tOrDe fau l t () ;
23
24 Assert . I sNotNul l (property) ;
25 Assert . I s N u l l (getMethod) ;
26 Assert . I s N u l l (setMethod) ;
27 }

Listing 11.7: Testing the call dependencies of the ObjectNode2Field rule

The instantiation can be tested more easily as a transformation rule has a property to
its base rule and an additional method IsInstantiating to determine whether it will
instantiate a specific computation.

11.6. Validation

In this section, the results of the empirical study among prospected users of the code gen-
erator from this case study are presented. At first, section 11.6.1 presents the results from

162

11.6. Validation 163

the evaluation sheets. The testing support has already been evaluated in section 11.5.
Section 11.6.2 will evaluate the understandability of the solution and NMF Transfor-
mations while section 11.6.3 evaluates the perceived extensibility of the solution.

In total, only five responses for the evaluation sheet were collected. Thus, the assertions
cannot be validated by means of statistical analysis. Furthermore, the data can only serve
to show trends.

11.6.1. Evaluation sheet results

In this section, the results from the evaluation sheets are presented. There were few
responses so that further statistical analysis is infeasible.

Figure 11.5.: The results for question 1

The results of question 1 are shown in figure 11.5. Five responses for this question could
be collected. The results show that most of the attendees barely have experience with
model-driven techniques.

Figure 11.6.: The results for question 2

The results for question 2 (see figure 11.6) confirm the results of question 1. Most users
do not have any experience with model transformation languages. Five responses were
collected, although some of them did not have any answer ticked. However, this may
be due to the fact that some people might not have experience with any of the given
transformation languages.

Figure 11.7.: The results for question 3

163

164 11. Code generator for OPC UA

The results of question 3 (see figure 11.7) shows that most attendees do not frequently
face model transformation problems. Most responses came from people that face model
transformations less than once in a month. Again, five responses were collected.

Figure 11.8.: The results for question 4

Question 4 has been the first question on the topic rather than on the responders back-
ground. The results shown in figure 11.8 show that the respondents understood the code
generator quite good. In particular, almost all responses voted for a good understand-
ability. As the code generator is an example of a model transformation with NTL, we
may conclude that NTL can be used to write understandable model transformations. Five
responses could be collected.

Figure 11.9.: The results for question 5

Unlike the code generator, the underlying framework was not as understandable. At least,
this is indicated by the results of question 5 (see figure 11.9). Still, most responses reported
a at least rather good understandability of NMF Transformations but the responses
are worse than those given for question 4. However, in combination with the results from
question 4, this speaks that one does not necessarily has to understand the underlying
framework to understand what is going on in the code generator - in scenarios like this
where most users do not face model transformations on a regularly basis, this is a good
thing. Five responses could be collected.

Figure 11.10.: The results for question 6

The responses regarding whether the attendees would use the code generator in production
code are rather reluctant (see figure 11.10). Although a ”Not applicable” answer was
provided, only four responses were collected. The other responses indicated that the

164

11.6. Validation 165

respondents were unsure whether they will use the code generator as the responses are
centered arround ”Maybe”.

Figure 11.11.: The results for question 7

However, the results from question 7 show that indeed, in case of a use in a production
environment, the code generator would be a subject to adoption. This again underlines
the importance of the extensibility.

Figure 11.12.: The results for question 8

In case of such adoptions, the results of question 8 (see 11.12) show that the structure of
the code generator help to reduce the efforts. Most responses even stated that the efforts
could be reduced significantly.

Figure 11.13.: The results for question 9

The results of question 9 in figure 11.13 indicate that most quality attributes of model
transformations are improved using NMF Transformations. The clearest improve-
ments compared to a general purpose solution were expected for the consistency and con-
ciseness where NMF Transformations is expected to achieve significant improvements.
As a reason, what NMF Transformations mainly does is to bring the abstractions
known for model transformations to the C# language. As a result, the code generator
gains some shares of the conciseness and consistency of model transformations written in
other MTLs.

Other quality attributes like modifiability were not expected to improve significantly. One

165

166 11. Code generator for OPC UA

response even reported that the modifiability of the model transformations is slightly
degraded.

From all quality attributes, the modifiability is the one that the respondents seem to be
most uncertain with as the responses are most discordant. The reason for this may be
that modifiability has multiple aspects that each of the respondents may have weighted
differently. On the one hand, modifiability incorporates consistency, conciseness and un-
derstandability. If a developer wants to modify code, he has to understand it. If the
model transformation is written in a consistent manner, the programming style for the
modification is clear. A better conciseness result in less code to modify. Following these
arguments, one could argue that the modifiability is improved with NMF Transforma-
tions, as seemingly understandability, conciseness and consistency are improved by NMF
Transformations. On the other hand, modifiability is probably the quality attribute
that is most affected by tool support. This existing tool support in tools like Visual Studio
was created for general purpose code. Without knowing NMF Transformations too
much, one could be doubtful about whether this tool support is also applicable on NTL.
This may be the reason for the responses expecting the modifiability to decline. However,
the previous case studies indicate that the tool support provided by Visual Studio are still
valid for NTL.

11.6.2. Understandability

The results from the understandability questions indicate a good understandability of
the code generator (see figures 11.8 and 11.9) and NMF Transformations. The few
responses do not allow any analysis on correlations. However, the code generator was
even rated more understandable than NMF Transformations, indicating that the code
generator as a concrete model transformation example can be understood without an
in-depth knowledge of the transformation language. As a reason, for anyone knowing
C#, the code is still understandable as a general purpose code. Although NTL adds a
flavor of an internal DSL, the code within the transformation rules read pretty much like
usual general purpose code that is understandable without any further knowledge of NMF
Transformations. As the very first questions unveil that most developers do not have a
strong background in model-driven techniques (unlike the participants at the TTC), this
is an important finding.

The results of question 9 show that most people told that the understandability was im-
proved by NMF Transformations, although only slightly. As a possible reason, to
fully understand a model transformation, one has to understand the underlying model
transformation language or framework. The results of question 5 show that the model
transformation language and framework used for the code generator, NMF Transfor-
mations, was not understood really well. This hampers the impact of NMF Trans-
formations on the understandability of a model transformation language. On the other
hand, both conciseness and consistency are improved, some even say significantly. From
the results, these improvements probably prevail the drawbacks of a further framework or
language to master. In combination, this argumentation leads to slight improvements for
the understandability which is confirmed by the responses.

11.6.3. Extensibility

The results of question 7 indicate that indeed, the code generator is a clear subject of
adoptions. Most respondents report that major adoptions would be required to apply the
code generator in a production scenario. As a reason, the code generator does only produce
very basic code that is not tied to a specific SDK, yet. In a use case, users will have to add
support that the code generator generates code tied to the SDK that they want to work

166

11.7. Conclusions 167

with. The results of question 6 indicate that these adoptions look to big to master, as they
tended to rather not use the code generator of this case study. However, the majority of
responses indicate that extensions of the code generator would viable alternatives.

According to the extensibility and adaptability of the code generator, the results of question
8 clearly show the trend that the efforts for the adoptions are expected to decline with
the NMF Transformations code generator. Most responses tell that the efforts for
the adoptions are significantly reduced in the code generator implementation. This may
be seen a confirmation of the discussion made in section 7.4.9. Furthermore, the code
generator combines the possibilities of NMF Transformations with the features offered
by the C# host language. Furthermore, as reversed dependencies may also serve as an
extension mechanism, this yields the three-stage-extensibility described in section 11.4.

11.7. Conclusions

The ABB case study showed the applicability of NMF Transformations in an industry
setting. As a basic prerequisite, NMF Transformations operates on plain objects and
thus can result in an object model of the System.CodeDOM namespace that can be used
for language-independent code generation.

The resulting model transformation could be entirely covered by unit test code. Almost
more important, the model transformation could be shown to have an excellent extensi-
bility. This is achieved by combining the extensibility features of NMF Transforma-
tions with those from usual C# to a three-stage-extensibility of the model transformation.
Results of questionnaires show that the efforts for adopting the model transformation are
significantly less than for a general purpose solution.

Thus, in a situation where other MTLs are inappropriate for technical restrictions, NMF
Transformations serves to introduce main model transformation abstractions. As a
result, the code generator is more concise, more consistent, more understandable and last
but not least more extensible than a general purpose solution would be.

167

12. Validation Summary

The previous three case study were used to validate NMF Transformations against
both other model transformation languages and plain general purpose solutions. The
validation has been done regarding to the model transformation quality attributes from
van Amstel (see chapter 3.4). Table 12.1 lists the validation that has been performed in
the previous chapters.

Quality attribute Chapter 9 Chapter 10 Chapter 11

Understandability X X X
Modifiability Xa Xb Xc

Reusability − − −
Modularity − − −
Completeness − − −
Consistency X X X
Conciseness X X X

aFocus on discoverability support and change impact of extension scenario
bFocus on debugging and refactoring support
cFocus on testing and extensibility

Table 12.1.: Performed validation for NMF Transformations

This validation accompanies the discussion from chapter 8 as all quality attributes that
needed further research have been investigated with case studies. The following sections
summarize the findings from the case studies regarding to these quality attributes. First,
section 12.1 compares these case studies in order to classify their results. Next, section 12.2
summarizes the findings for the understandability of model transformations created with
NMF Transformations. Section 12.3 summarizes the findings for modifiability, section
12.4 for consistency and section 12.5 for the the conciseness of the model transformations.

12.1. Comparison of the case studies

The case studies used for the validation of NMF Transformations differ in the back-
ground of the developers involved in it. Whereas the attendees of the TTC mostly also
attended the International Conference on Model Transformations (ICMT, co-located on
the STAF), one can assume that these people have a strong background in model trans-
formation. On the other hand, the attendees at the code generator presentation at ABB

169

170 12. Validation Summary

were prospected users of the code generator that did not necessarily have a background
in model-driven engineering. Indeed, the evaluation sheet results show that few of them
have background knowledge in MDE.

This has various consequences. First and foremost, the evaluation criteria for the responses
differ. Where the most important metric for the TTC has been the conciseness and un-
derstandability, the tool support is more important in industry. As NMF Transfor-
mations can provide this tool support at the cost of a worse conciseness, the acceptance
of NMF Transformations in academia (at the TTC) is not as good as in industry.
Especially the full test code coverage has been an important argument for the industry.
However, neither the test code coverage nor the debugging or refactoring support were
remarked in the PN2SC solution paper. As a reason, the test support was not ready for
prime-time at the time of the TTC conference. The debugging support was not described
as the debugging support of a mainstream language seemed obviously good. This was
not perceived by the reviewers. The fact that the debugging support of NMF Trans-
formations was rated so bad can be seen as an evidence of the mismatch of the TTC
reviewers and the targeted audience for NMF Transformations as NMF Transfor-
mations aims to experienced C# developers.

It has also consequences on the understandability of NMF Transformations. The
.NET platform is very uncommon among the TTC participants. Thus, valuable space
and time during the solution presentation had to be spent to clarify some aspects that
have nothing to do with the transformation language itself. On the other hand, concepts
such as transformation rules are common to these people where most of them designed a
transformation language on their own. The situation at ABB was exactly the other way
round. While everybody was able to understand C#-code, common abstractions of model
transformation languages were mostly unknown. This affects how the attendees rate the
understandability of the model transformations.

Another difference is the state of NMF Transformations during these case studies.
While the ABB case study has been conducted almost at the end of this master thesis,
the TTC conference was already in late June. The call for solutions ended even before
that date. As a consequence, NMF Transformations was not as matured. Some useful
contributions of the existing tool support (such as the visualization of transformation
rules with Visual Studios Code Map feature) have only been detected long after the TTC
conference. Thus, the solution presentation did not make a clear focus on the biggest
advantage of NMF Transformations, which is its outstanding tool support. Thus, the
results of the TTC are biased to the disadvantage of NMF Transformations.

But also the case studies at the TTC have a large difference between them. Where the
tasks of the Flowgraphs case were typical model transformation tasks, the Petri Nets to
State Charts case was a rather seldom case. As a consequence, these cases attracted very
different model transformation languages. The Flowgraphs case mostly attracted typical
external MTLs. Some of them such as ATL and Epsilon have gained quite some popu-
larity. The Petri Nets to State Charts case rather attracted more exotic transformation
languages not as popular. This is because the nature of the PN2SC transformation as an
input-destructive transformation is rather seldom. While other transformation languages
had built-in support for such transformations, we only used the case for a demonstration
how to integrate general purpose code into a model transformation with NMF Trans-
formations. As a result, the results for the PN2SC case are not as meaningful as the
results from the Flowgraphs case (which is also why the Flowgraphs case is described in
more detail).

However, as the TTC cases were validated with opinions from model transformation ex-
perts whereas the ABB case study was evaluated by developers at ABB, the results of

170

12.2. Understandability 171

the ABB case study are also more important than the results of the TTC Flowgraphs
case. As a reason, the responses that were collected in the ABB case study came from
industry from developers that are quite close to the intended target audience for NMF
Transformations, C# developers with little experience in MDE.

12.2. Understandability

The Flowgraphs case showed that NMF Transformations yields quite understandable
model transformations. The understandability (and also conciseness) of NMF Transfor-
mations is worse than for external languages, but the difference (probably especially in the
understandability) is not too big. In comparison to other internal DSLs like FunnyQT,
the model transformations with NMF Transformations are more understandable.

The PN2SC case indicates that the understandability can be further improved by appropri-
ate tool support. Such tool support is available but has only been detected after the TTC
conference. However, the abstractions of NMF Transformations may be unsuitable
for the PN2SC case, thereby dragging down the understandability of the solution.

The ABB case study indicates that model transformations written with NMF Transfor-
mations are more understandable than general purpose solutions. This is due to the lack
of proper abstractions for model transformation in mainstream general purpose languages
like Java or C# [SK03a]. Furthermore, the Code Map feature of Visual Studio can be
used for a visualization of the transformation structure. Such a visualization is shown to
be beneficial for maintenance tasks [RNHR13]. However, whereas such tool support for
QVT took a lot of effort, a very much similar tool support for NMF Transformations is
simply inherited from the tool support offered by Visual Studio for C#.

12.3. Modifiability

Besides the understandability that has also has a great impact on the modifiability of a
model transformation, the modifiability of model transformations written with NMF can
characterized as follows:

Discoverability

The analysis of the discoverability support of the transformation languages that solved
the Flowgraphs case showed that NTL has a very good discoverability support that en-
hances the learnability of the transformation language. The discoverability support also
has the consequence that developers do not necessarily need to know the full language as
they can discover it while performing maintenance tasks. The discoverability support is
only hampered by the fact that the discoverability does not cover the way how a model
transformation is composed of transformation rules.

As general purpose solutions do not have any discoverability restriction, the discoverability
support of these solutions is better than for NMF Transformations. However, as these
restrictions only appeared in the composition of transformations of transformation rules,
the differences can be considered negligible. Thus, basically the full discoverability support
of Visual Studio is provided for model transformations with NMF Transformations.

However, this statement is only valid for the aspects of NMF Transformations that
have been covered by the Flowgraphs case. This does not include transformation compo-
sition or the relational extensions. The discoverability support for these parts of NMF
Transformations has to be investigated in further research. However, besides some
minor restrictions, it can be prospected that the discoverability support is still very good.

171

172 12. Validation Summary

Extensibility

As a result from the analysis of the extension scenario in chapter 9, NTL can be used
to write extensible model transformations in the sense that they have a limited change
impact for perfective changes. No existing code had to be changed to implement support
for additional metaclasses in the input metamodel. However, this proposition holds for
the most transformation languages that participated in the Flowgraphs case. Furthermore,
the analysis also shows that the fact that NMF Transformations requires an explicit
transformation structure also leads to an increased change impact when compared to other
solutions.

However, compared to a general purpose solution, the analysis of section 11.6.3 suggests
that model transformations with NTL are much more extensible than those written with
general purpose code. The code generator created in the ABB case study demonstrates a
three-stage-extensibility that is possible to specify with NMF Transformations.

The results from the ABB case study indicate that the efforts for adopting the code
generator are significantly reduced compared to a general purpose solution.

Debugging

The analysis of the Petri Net to State Chart case showed that NMF Transforma-
tions has a relatively good debugging support. This debugging support is inherited from
the C# host language. However, it could be improved by means of model visualization
and improved techniques to visualize the model transformation. The Flowgraphs case has
not been analyzed for debugging support but the debugging support in these languages is
rather poor as most of the transformation languages in the Flowgraphs case are external
DSLs that do not inherit any debugging support from their host language (as they do not
have any host language).

As the debugging support from NMF Transformations is entirely inherited from Visual
Studio for just any C# projects, the debugging support of NTL is not improved compared
with the debugging support of a general purpose solution. The general purpose solution
also lacks of suitable model visualization techniques. On the other hand, if suitable model
visualizations could be used in general purpose code, this support would also be applicable
for NMF Transformations.

Thus, a suitable model visualization technology would be a very important contribution.

Testing

The case study from ABB Corporate Research shows that NTL has a good built-in support
for unit tests of model transformations. It was possible to achieve a full test code coverage.
These tests could be written applying a schematic procedure.

Refactorings

Similar to the debugging support, the refactoring support for NTL is also inherited from
its host language C#. However, this tool support is remarkably good and resulted in an
award for the best refactoring support at the Petri Nets to State Charts case at the TTC.

On the other side, not all refactorings may be suitable for NMF Transformations. It
is a subject of further research to investigate which refactoring operations can be applied
to NMF Transformations. However, as there is a plethora of refactoring operations
available, this would blow the limitations of this master thesis. But as these refactoring
are designed while not having NMF Transformations in mind, one can conclude that
refactoring support for NMF Transformations is not as good as the support for general
purpose solutions, as it is likely that not all refactoring operations can be used for NMF
Transformations.

172

12.4. Consistency 173

Overall Modifiability

It would be desirable to combine the results of the disciplines within the modifiability to
something like an overall score for modifiability. However, this is not possible as it unclear
how these factors influence the overall modifiability. We experienced this problem in
section 11.6.1, already. The analysis of this section also suggests that the different aspects
of modifiability are perceived individually important. From the previous paragraphs, NMF
Transformations has a very strong tool support for a MTL in terms of discoverability,
debugging and refactoring support. Furthermore, model transformations with NTL allow
a full test code coverage where the transformation code can be covered in a schematic way.

On the other hand, the worse conciseness and understandability in comparison with other
MTLs lile Epsilon hamper the modifiability of model transformations written with NTL.
In comparison to general purpose languages, however, the situation is exactly reversed.
The conciseness and understandability are improved whereas the tool support is hampered.
NMF Transformations provides a compromise between other (typical especially exter-
nal) MTLs and general purpose solutions. However, as most of the tool support for C#
is still valid for NTL, it provides much of the strength of MTLs while still preserving the
advantages of general purpose solutions.

12.4. Consistency

The case studies showed that NMF Transformations enables transformation devel-
opers to specify very consistent model transformations. However, although NTL allows
developers to easily integrate arbitrary general purpose code, this integration lowers the
solution consistency more than it does for other model transformation languages as for
example FunnyQT. As a reason, the difference between the transformation language and
the host language is larger for NTLas C# does not allow a syntax as flexible as Clojure.
In some cases, external languages like in this case EMF-IncQuery may experience that
the language is not capable for all requirements. In such a scenario, NMF Transforma-
tions can preserve the consistency much better as it allows to integrate arbitrary general
purpose code much easier.

In comparison to general purpose solutions, the ABB case study indicates that the con-
sistency of the model transformations is significantly improved. This is mainly due to the
existence of appropriate abstractions like e.g. transformation rules.

Thus, the internal DSL nature of NMF Transformations makes it possible to combine
the strength of both general purpose solutions (easy integration of arbitrary code) and
external MTLs (their conciseness).

12.5. Conciseness

As could be expected, the conciseness of the NTL solutions to the TTC cases are rather
worse in comparison to other MTLs. As a reason, there is a lot of syntactic noise in NTL.
Unlike its opponents in the Flowgraphs case, NTL requires the transformation developer
to specify the transformation structure. As this can be omitted in other languages, this
additional specification lowers the conciseness. However, it is unclear whether omitting
the structure of a model transformation is a such a good idea as an explicit structure helps
in the understandability of the code in maintenance scenarios. Furthermore, it is unclear
whether the conciseness is so important as NTL also inherits great tool support, including
code completion.

However, when compared to general purpose solutions, the ABB case study indicates that
the conciseness of the solutions is significantly improved. This is also a consequence from
the introduction of appropriate high-level abstractions.

173

174 12. Validation Summary

The combination of these findings may explain the need for MTLs as they dramatically
improve the conciseness of model transformations. Although NTL cannot completely
keep up with other MTLs, it does provide appropriate abstractions to improve a model
transformations conciseness.

A further aspect of the conciseness discussion is the scale of the transformation. Even
the most concise solution of the Flowgraphs case took 300 LOC. Given that this trans-
formation was cut down in functionality to reduce the effort for the solutions and thus
attract more participants, many transformation scenarios easily exceed the border where
transformations fit to one or two screen sizes. Thus, the transformation is too big so that
the transformation developer can only look at parts of it at a time. Instead, it is nec-
essary to navigate through the solutions. But if only parts can be considered at a time,
the conciseness gets less important. Instead, the tool support helping the developer to
find the necessary parts of the transformation as quick as possible gain importance. This
effect is not catched up by the TTC asking mainly for conciseness but not for the tool
support that may make the conciseness less important because the model transformations
are small enough that this tool support is mostly unimportant.

This is an intrinsic problem of academia. If one conducted a study with model transforma-
tions large enough to observe such effects and compare them across multiple transformation
languages, the efforts for the participants handing in solutions would be much too large for
anybody to participate. Furthermore, analyzing such solutions gets difficult, as it is hard
to present the characteristics of a large transformation in a reasonable small amount of
time. The Flowgraphs case was already at the borderline, as the space and time limitations
did not allow anybody to present their model transformation completely.

174

13. Conclusion

What remains in this thesis is to summarize what has actually been done. Section 13.1
wraps up the results of this master thesis. Section 13.2 shows up the assumptions that
were made to obtain these results and thus their possible threats to validity. Section 13.3
draws future work to be made.

13.1. Results

In this master thesis, NMF Transformations has been presented, a model transforma-
tion framework and internal DSL for .NET languages, specifically C#. Its main contri-
bution is to introduce main model transformation abstractions in a mainstream general
purpose language. On the other hand, NMF Transformations inherits the matured
tool support for C#. This promises to lower the maintenance efforts especially for model
transformations maintained by developers less frequently faced with model transforma-
tion problems. Furthermore, unlike most other model transformation languages, NMF
Transformations operates on plain objects in memory, so no modeling framework is
required.

A further result of this thesis is a comprehensive validation of NMF Transformations,
particularly against several other MTLs in the TTC case studies and against a general
purpose version in the ABB case study. The validation shows that NMF Transforma-
tions has outstanding tool support in terms of discoverability, debugging and refactoring.
This is because NMF Transformations can make use of the tool support offered by
Visual Studio. Unlike other tools, this tool support is also actively maintained. Especially
important in industry scenarios, NTL allows for full test code coverage of model trans-
formations where the test code can be retrieved in a schematic procedure. Furthermore,
NTL leads to very consistent solutions. On the other hand, model transformations with
NTL are not as concise as solutions of other MTLs. This is due to the amount of syntactic
noise of NTL in C# but also due to the fact that NTL requires transformation developers
to specify the transformation structure explicitly. However, compared tpo general purpose
solutions, the validation also indicates that the conciseness of model transformations with
NTL is still much better. The understandability of model transformations is improved
by NMF Transformations compared to general purpose solutions but also with model
transformations written in other internal DSLs.

The abstractions from NMF Transformations are not as appropriate for the input-
destructive model transformation of the PN2SC case. However, the case also shows that

175

176 13. Conclusion

NMF Transformations allows an easy integration of general purpose code. Thus,
it is possible to take advantage of the abstractions provided by NMF Transforma-
tions where they are appropriate and integrate general purpose code for the remaining
tasks.

Put in a nutshell, NTL provides a compromise between state-of-the-art MTLs and main-
stream languages in that it provides the tool support from these mainstream languages
to model transformation where this tool support is outstanding. On the other hand,
NTL preserves much of the conciseness and consistency that is connected to most model
transformation languages. While the tool support can be inherited almost entirely and
the model transformations are very consistent, the conciseness cannot be preserved equally
well.

For the overall problem of the acceptance of MDE in an industrial scenario, the master
thesis shows a way how tool support can be obtained for model transformation languages
by inheriting it from the tool support for the host language. The remarkable result here
is that it is possible to design an internal DSL that is nearly as concise as external MTLs
but inherits the tool support for general purpose languages.

13.2. Assumptions & Limitations

The validation is based on some assumptions that limit its validity. These limitations are
as follows:

• Relational Extensions: The relational extensions to NTL have not been subject
of validation as the cases could be solved without it. Thus, the solutions did not make
use of it to increase the solutions consistency. However, these extensions are meant
for more sophisticated patterns that did not appear in the case studies. Further
evaluation may show the applicability.

• Quality attributes: The validation is based on the model transformation quality
attributes defined by van Amstel [vA11]. Basically, the thesis assumes that these
quality attributes are meaningful for the perceived quality of a model transformation.
Furthermore, these quality attributes were evaluated with a focus on maintainabil-
ity. Although originally defined for development and maintenance, the focus of the
quality attributes may be biased by this focus.

• Evaluation of transformation language with single cases: The thesis uses the
solutions of the TTC to validate NTL against opponents from the TTC. Although
the purpose of the TTC is to compare the transformation tools, the solutions might
have not put a focus on the quality attributes from van Amstel. However, some of
these quality attributes were also used to evaluate the solutions in the TTC. However,
the thesis basically assumes that the solution authors did their best to write as good
as possible solutions to the TTC.

• Evaluating the quality attributes: These quality attributes are impossible to
measure directly and therefore hard to compare. In this thesis, we mostly based the
comparison on questionnaires from the TTC, metrics (mainly LOC for the concise-
ness) and simple discussion. While the results of questionnaires may be biased for
several reasons, discussions yield the threat that important arguments are missing.
The most important reason for a bias in the questionnaires is the background of the
people that fill out these questionnaires. This factor is dampened by the fact that
all of the case studies include questionnaires on e.g. the understandability. The risk
of missing arguments in the discussion cannot be excluded.

176

13.3. Future Work 177

• Breakdown of modifiability: For evaluation purposes, the quality attribute mod-
ifiability has been broken down into several aspects. However, this breakdown itself
is also subject to evaluation.

• Understandability of the TTC case studies: The evaluation of the understand-
ability in the TTC case studies is likely biased by the fact that the questionnaires
originally only contained a combined assessment for conciseness and understandabil-
ity. As one does not know how the attendees of the TTC set their priorities regarding
understandability or conciseness, a validation of the understandability with this data
is slightly unreliable.

• Difficult evaluation questions: The quality attributes are hard to grasp. For
this reason, one usually just evaluates the perception of these quality attributes.
However, it is also hard for developers to put this perception in numbers, i.e. fill
out a questionnaire. As a result, the data on these perceived quality attributes is
not so entirely reliable. However, the data is much better than no data of these
perceived quality attributes. However, this assumption limits the expressiveness of
the evaluation.

• Limited amount of questionnaires: The small amount of responses to the ques-
tionnaires both of the TTC and the ABB case study prohibits proper statistical
evaluation of this data. As a consequence, the data may only be used to indicate a
trend. As a consequence, the results of the evaluation sheets may only be interpreted
as showing how it might be. Further research must be taken to consolidate the re-
sults of this master thesis. However, it is difficult to conduct a survey on a topic as
special as model transformations with a particular model transformation tool such
that enough responses can be collected for statistical validation.

As a consequence, the validation within this master thesis may only be used to see trends.
It cannot provide proper empirical evidence of the propositions made on the various aspects
of model transformation languages.

13.3. Future Work

There are two principal ways of future work, either to improve NMF Transforma-
tions or to improve its validation. Improving the validation would be necessary to obtain
more reliable results. However, the benefit taken from such an improved validation is
unclear. Many of the threats to validity of the validation in this master thesis also apply
to further validation, e.g. the fact that the validated quality attributes are mostly hard to
grasp and can only be measured by their perception. Thus, the validation would still have
to be based on questionnaires. However, it would be hard to gather enough responses to
allow for statistical evidence of the propositions made from this validation.

On the other side, the model transformation community has still not reached consensus
about MTLs. This is indicated by the fact that most of the languages participating in the
TTC 2013 used entirely new model transformation languages. Only ATL and Epsilon
were MTLs that exist for a relatively long time (at least five years). The other very young
MTLs may fail to gather a reasonable large user base and thus may be dropped in near
future.

Thus, the future work is likely to concentrate on the improvements to NMF Transforma-
tions as this promises to be more worth the efforts. The possible improvements to NMF
Transformations have already been discussed in section 7.5. From this list, the most
promising portion of future work is the extension for change propagation and eventually
the model synchronization. As a reason, with these aspects, NMF Transformations can

177

178 13. Conclusion

benefit most from the probably biggest difference to other MTLs: While other MTLs are
based to transform files into other files, NMF Transformations works to transform
in-memory representations into other in-memory representations. Thus, NMF Trans-
formations can abstract from the current idea of model transformations that only run
once but rather install a maintaining correspondence link. Such a model synchronization
could be used for model servers that maintain multiple models in parallel.

Final Note

The master thesis showed how the problem of immature tool support for model transforma-
tions can be avoided by inheriting the existing tool support from general purpose languages.
This may help MDE to become accepted in idustry, as NMF Transformations gained
also gained acceptance among the attendees of the code generator presentation of ABB.

But even if NMF Transformations does not become accepted as a model transforma-
tion language on its own, I think it is still a valuable contribution as it can be used as
a target of code generation. The performance of the TTC case solutions was very good
(though not discussed in this thesis as performance is not related to maintainability), so
it may make sense to generate NTL-code for a model transformation originally specified
in e.g. ATL and execute this code instead of using the (potentially slower) ATL engine.

However, the improvements of NMF Transformations look even more promising, es-
pecially the model synchronization aspect.

178

Bibliography

[BBG+06] J. Bézivin, F. Büttner, M. Gogolla, F. Jouault, I. Kurtev, and A. Lindow,
“Model transformations? transformation models!” in Model Driven Engi-
neering Languages and Systems. Springer, 2006, pp. 440–453.

[BBM96] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-oriented
design metrics as quality indicators,” Software Engineering, IEEE Transac-
tions on, vol. 22, no. 10, pp. 751–761, 1996.

[BH11] H. Barringer and K. Havelund, TraceContract: A Scala DSL for trace anal-
ysis. Springer, 2011.

[BKR09] S. Becker, H. Koziolek, and R. Reussner, “The Palladio component model
for model-driven performance prediction,” JSS, vol. 82, pp. 3–22, 2009.
[Online]. Available: http://dx.doi.org/10.1016/j.jss.2008.03.066

[CA08] K. Cwalina and B. Abrams, Framework design guidelines: conventions, id-
ioms, and patterns for reusable. net libraries. Addison-Wesley Professional,
2008.

[CFM10] A. Ciancone, A. Filieri, and R. Mirandola, “Mantra: Towards model transfor-
mation testing,” in Quality of Information and Communications Technology
(QUATIC), 2010 Seventh International Conference on the. IEEE, 2010, pp.
97–105.

[CH03] K. Czarnecki and S. Helsen, “Classification of model transformation ap-
proaches,” in Proceedings of the 2nd OOPSLA Workshop on Generative Tech-
niques in the Context of the Model Driven Architecture, vol. 45, no. 3, 2003,
pp. 1–17.

[CH06] ——, “Feature-based survey of model transformation approaches,” IBM Sys-
tems Journal, vol. 45, no. 3, pp. 621–645, 2006.

[Chu36] A. Church, “An unsolvable problem of elementary number theory,” American
journal of mathematics, vol. 58, no. 2, pp. 345–363, 1936.

[Chu40] ——, “A formulation of the simple theory of types,” The journal of symbolic
logic, vol. 5, no. 2, pp. 56–68, 1940.

[CK91] S. Chidamber and C. Kemerer, Towards a metrics suite for object oriented
design. ACM, 1991, vol. 26, no. 11.

[CK94] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” Software Engineering, IEEE Transactions on, vol. 20, no. 6, pp.
476–493, 1994.

[CM08] J. S. Cuadrado and J. G. Molina, “Approaches for model transformation
reuse: Factorization and composition,” in Theory and Practice of Model
Transformations. Springer, 2008, pp. 168–182.

179

http://dx.doi.org/10.1016/j.jss.2008.03.066

180 Bibliography

[CM09] ——, “Modularization of model transformations through a phasing mecha-
nism,” Software & Systems Modeling, vol. 8, no. 3, pp. 325–345, 2009.

[CMT96] G. Canfora, L. Mancini, and M. Tortorella, “A workbench for program com-
prehension during software maintenance,” in Program Comprehension, 1996,
Proceedings., Fourth Workshop on. IEEE, 1996, pp. 30–39.

[CMT06] J. S. Cuadrado, J. G. Molina, and M. M. Tortosa, “Rubytl: A prac-
tical, extensible transformation language,” in Model Driven Architecture–
Foundations and Applications. Springer, 2006, pp. 158–172.

[ERRJ95] G. Erich, H. Richard, J. Ralph, and V. John, “Design patterns: elements
of reusable object-oriented software,” Reading: Addison Wesley Publishing
Company, 1995.

[Esh05] R. Eshuis, Statecharting petri nets. Beta, Research School for Operations
Management and Logistics, 2005.

[EV06] S. Efftinge and M. Völter, “oaw xtext: A framework for textual dsls,” in
Workshop on Modeling Symposium at Eclipse Summit, vol. 32, 2006.

[FB99] M. Fowler and K. Beck, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 1999.

[FMSA13] O. Finot, J.-M. Mottu, G. Sunyé, and C. Attiogbé, “Partial test oracle in
model transformation testing,” in Theory and Practice of Model Transfor-
mations. Springer, 2013, pp. 189–204.

[Fow10] M. Fowler, Domain-specific languages. Addison-Wesley Professional, 2010.

[FSB04] F. Fleurey, J. Steel, and B. Baudry, “Validation in model-driven engineer-
ing: testing model transformations,” in Model, Design and Validation, 2004.
Proceedings. 2004 First International Workshop on. IEEE, 2004, pp. 29–40.

[GDG08] T. Gelhausen, B. Derre, and R. Geiß, “Customizing grgen. net for model
transformation,” in Proceedings of the third international workshop on Graph
and model transformations. ACM, 2008, pp. 17–24.

[GGL05] L. Grunske, L. Geiger, and M. Lawley, “A graphical specification of model
transformations with triple graph grammars,” in Model Driven Architecture–
Foundations and Applications. Springer, 2005, pp. 284–298.

[GK08] R. Geiß and M. Kroll, “Grgen. net: A fast, expressive, and general purpose
graph rewrite tool,” in Applications of Graph Transformations with Industrial
Relevance. Springer, 2008, pp. 568–569.

[GR13] P. V. Gorp and L. Rose, “The petri-nets to statecharts transformation case,”
in Sixth Transformation Tool Contest (TTC 2013), ser. EPTCS, 2013, to
appear.

[Gue12] E. Guerra, “Specification-driven test generation for model transformations,”
in Theory and Practice of Model Transformations. Springer, 2012, pp. 40–
55.

[GW08] T. Goldschmidt and G. Wachsmuth, “Refinement transformation support for
qvt relational transformations,” in 3rd Workshop on Model Driven Software
Engineering, MDSE, 2008.

[GWS12] L. George, A. Wider, and M. Scheidgen, “Type-safe model transformation
languages as internal dsls in scala,” in Theory and Practice of Model Trans-
formations. Springer, 2012, pp. 160–175.

180

Bibliography 181

[Hal77] M. H. Halstead, Elements of Software Science (Operating and programming
systems series). Elsevier Science Inc., 1977.

[HGH13a] G. Hinkel, T. Goldschmidt, and L. Happe, “An NMF Solution for the Flow-
graphs case study at the TTC 2013,” in Sixth Transformation Tool Contest
(TTC 2013), ser. EPTCS, 2013, to appear.

[HGH13b] ——, “An NMF Solution for the Petri Nets to State Charts case study at the
TTC 2013,” in Sixth Transformation Tool Contest (TTC 2013), ser. EPTCS,
2013, to appear.

[Hin13] G. Hinkel, “An approach to domain-specific model optimization,” http:
//www.codeplex.com/Download?ProjectName=nmf&DownloadId=722482,
Karlsruhe Institute of Technology, Tech. Rep., 2013.

[HJSW09] F. Heidenreich, J. Johannes, M. Seifert, and C. Wende, Jamopp: The java
model parser and printer. Techn. Univ., Fakultät Informatik, 2009.

[HLG13] S. Hildebrandt, L. Lambers, and H. Giese, “Complete specification coverage
in automatically generated conformance test cases for tgg implementations,”
in Theory and Practice of Model Transformations. Springer, 2013, pp. 174–
188.

[Hor13] T. Horn, “The TTC 2013 flowgraphs case,” in Sixth Transformation Tool
Contest (TTC 2013), ser. EPTCS, 2013, to appear.

[KB03] S. Kounev and A. Buchmann, “Performance modelling of distributed e-
business applications using queuing petri nets,” in Performance Analysis of
Systems and Software, 2003. ISPASS. 2003 IEEE International Symposium
on. IEEE, 2003, pp. 143–155.

[KBL13] M. E. Kramer, E. Burger, and M. Langhammer, “View-centric engineering
with synchronized heterogeneous models,” in Proceedings of the 1st Work-
shop on View-Based, Aspect-Oriented and Orthographic Software Modelling.
ACM, 2013, p. 5.

[KGBH10] L. Kapová, T. Goldschmidt, S. Becker, and J. Henss, “Evaluating maintain-
ability with code metrics for model-to-model transformations,” in Research
into Practice–Reality and Gaps. Springer, 2010, pp. 151–166.

[Kle06] A. Kleppe, “Mcc: A model transformation environment,” in Model Driven
Architecture–Foundations and Applications. Springer, 2006, pp. 173–187.

[Kön05] A. Königs, “Model transformation with triple graph grammars,” in Model
Transformations in Practice Satellite Workshop of MODELS, 2005, p. 166.

[KP09] S. Kelly and R. Pohjonen, “Worst practices for domain-specific modeling,”
Software, IEEE, vol. 26, no. 4, pp. 22–29, 2009.

[KS06] A. Königs and A. Schürr, “Tool integration with triple graph grammars-a
survey,” Electronic Notes in Theoretical Computer Science, vol. 148, no. 1,
pp. 113–150, 2006.

[Leh74] M. Lehman, Programs, Cities, Students: Limits to Growth? Imperial Col-
lege of Science and Technology, University of London, 1974.

[LS81] B. P. Lientz and E. B. Swanson, “Problems in application software mainte-
nance,” Communications of the ACM, vol. 24, no. 11, pp. 763–769, 1981.

[McC76] T. J. McCabe, “A complexity measure,” Software Engineering, IEEE Trans-
actions on, no. 4, pp. 308–320, 1976.

181

http://www.codeplex.com/Download?ProjectName=nmf&DownloadId=722482
http://www.codeplex.com/Download?ProjectName=nmf&DownloadId=722482

182 Bibliography

[MEG+03] E. Merks, R. Eliersick, T. Grose, F. Budinsky, and D. Steinberg, “The eclipse
modeling framework,” retrieved from, total, p. 37, 2003.

[MFM+09] P. Mohagheghi, M. A. Fernandez, J. A. Martell, M. Fritzsche, and W. Gilani,
“Mde adoption in industry: challenges and success criteria,” in Models in
Software Engineering. Springer, 2009, pp. 54–59.

[MGSF13] P. Mohagheghi, W. Gilani, A. Stefanescu, and M. A. Fernandez, “An em-
pirical study of the state of the practice and acceptance of model-driven en-
gineering in four industrial cases,” Empirical Software Engineering, vol. 18,
no. 1, pp. 89–116, 2013.

[MLD09] W. Mahnke, S.-H. Leitner, and M. Damm, OPC unified architecture.
Springer, 2009.

[Obj11] Object Management Group, “Meta Object Facility (MOF) 2.0 Query/View/
Transformation Specification,” http://www.omg.org/spec/QVT/1.1/PDF/,
2011.

[OH92] P. Oman and J. Hagemeister, “Metrics for assessing a software system’s main-
tainability,” in Software Maintenance, 1992. Proceerdings., Conference on.
IEEE, 1992, pp. 337–344.

[OHA92] P. Oman, J. Hagemeister, and D. Ash, “A definition and taxonomy for soft-
ware maintainability,” Moscow, ID, USA, Tech. Rep, pp. 91–08, 1992.

[Pic08] C. Picard, “Model transformation with scala,” 2008.

[PJ98] J. Palsberg and C. B. Jay, “The essence of the visitor pattern,” in Computer
Software and Applications Conference, 1998. COMPSAC’98. Proceedings.
The Twenty-Second Annual International. IEEE, 1998, pp. 9–15.

[RD11] M. P. Robillard and R. Deline, “A field study of api learning obstacles,”
Empirical Software Engineering, vol. 16, no. 6, pp. 703–732, 2011.

[RNHR13] A. Rentschler, Q. Noorshams, L. Happe, and R. Reussner, “Interactive visual
analytics for efficient maintenance of model transformations,” in Theory and
Practice of Model Transformations. Springer, 2013, pp. 141–157.

[RRMB08] R. Romeikat, S. Roser, P. Müllender, and B. Bauer, “Translation of qvt
relations into qvt operational mappings,” in Theory and Practice of Model
Transformations. Springer, 2008, pp. 137–151.

[S+00] R. Soley et al., “Model driven architecture,” OMG white paper, vol. 308, p.
308, 2000.

[SBM08] S. Sen, B. Baudry, and J.-M. Mottu, “On combining multi-formalism knowl-
edge to select models for model transformation testing,” in Software Testing,
Verification, and Validation, 2008 1st International Conference on. IEEE,
2008, pp. 328–337.

[Sch95] A. Schürr, “Specification of graph translators with triple graph grammars,”
in Graph-Theoretic Concepts in Computer Science. Springer, 1995, pp.
151–163.

[Sha10] R. Shatnawi, “A quantitative investigation of the acceptable risk levels of
object-oriented metrics in open-source systems,”Software Engineering, IEEE
Transactions on, vol. 36, no. 2, pp. 216–225, 2010.

182

http://www.omg.org/spec/QVT/1.1/PDF/

Bibliography 183

[SK03a] S. Sendall and W. Kozaczynski, “Model transformation: The heart and soul
of model-driven software development,” Software, IEEE, vol. 20, no. 5, pp.
42–45, 2003.

[SK03b] R. Subramanyam and M. S. Krishnan, “Empirical analysis of ck metrics for
object-oriented design complexity: Implications for software defects,” Soft-
ware Engineering, IEEE Transactions on, vol. 29, no. 4, pp. 297–310, 2003.

[Slo08] T. Sloane, “Experiences with domain-specific language embedding in scala,”
Domain-Specific Program Development, 2008.

[SS09] M. Stephan and A. Stevenson, “A comparative look at model transformation
languages,” Software Technology Laboratory at Queens University, 2009.

[Sta06] M. Staron, “Adopting model driven software development in industry–a case
study at two companies,” in Model Driven Engineering Languages and Sys-
tems. Springer, 2006, pp. 57–72.

[SV05] T. Stahl and M. Völter, Modellgetriebene Softwareentwicklung. dpunkt-
Verlag, 2005.

[SWM97] M.-A. Storey, K. Wong, and H. A. Muller, “How do program understanding
tools affect how programmers understand programs?” in Reverse Engineer-
ing, 1997. Proceedings of the Fourth Working Conference on. IEEE, 1997,
pp. 12–21.

[TDH08] N. Tillmann and J. De Halleux, “Pex–white box test generation for. net,” in
Tests and Proofs. Springer, 2008, pp. 134–153.

[TJF+09] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin, “On the
use of higher-order model transformations,” in Model Driven Architecture-
Foundations and Applications. Springer, 2009, pp. 18–33.

[vA11] M. F. van Amstel, “Assessing and improving the quality of model transforma-
tions,” Ph.D. dissertation, PhD thesis, Eindhoven University of Technology,
2011.

[vAvdB10] M. van Amstel and M. van den Brand, “Quality assessment of atl model
transformations using metrics,” in Second International Workshop on Model
Transformation with ATL, 2010.

[vAVDB11a] M. F. van Amstel and M. G. Van Den Brand,“Model transformation analysis:
staying ahead of the maintenance nightmare,” in Theory and Practice of
Model Transformations. Springer, 2011, pp. 108–122.

[vAvdB11b] M. van Amstel and M. van den Brand, “Using metrics for assessing the qual-
ity of atl model transformations,” in Proceedings of the Third International
Workshop on Model Transformation with ATL (MtATL 2011), vol. 742, 2011,
pp. 20–34.

[VGM11] P. Van Gorp and S. Mazanek, “Share: a web portal for creating and sharing
executable research papers,” Procedia Computer Science, vol. 4, pp. 589–597,
2011.

[Wag08] D. Wagelaar, “Composition techniques for rule-based model transformation
languages,” in Theory and Practice of Model Transformations. Springer,
2008, pp. 152–167.

[WKC08] J. Wang, S.-K. Kim, and D. Carrington, “Automatic generation of test mod-
els for model transformations,” in Software Engineering, 2008. ASWEC 2008.
19th Australian Conference on. IEEE, 2008, pp. 432–440.

183

184 Bibliography

[WKK+12] M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schönböck, and
W. Schwinger, “Fact or fiction–reuse in rule-based model-to-model trans-
formation languages,” in Theory and Practice of Model Transformations.
Springer, 2012, pp. 280–295.

[WS13] M. Wieber and A. Schürr, “Systematic testing of graph transformations: A
practical approach based on graph patterns,” in Theory and Practice of Model
Transformations. Springer, 2013, pp. 205–220.

[WVDSD10] D. Wagelaar, R. Van Der Straeten, and D. Deridder, “Module superimpo-
sition: a composition technique for rule-based model transformation lan-
guages,” Software & Systems Modeling, vol. 9, no. 3, pp. 285–309, 2010.

[yWL12] B. T. y Widemann and M. Lepper, “Paisley: pattern matching à la carte,” in
Theory and Practice of Model Transformations. Springer, 2012, pp. 240–247.

[Z1̈3] A. Zündorf, “Story Driven Modeling Libary (SDMLib): an Inline DSL for
modeling and model transformations, the Petrinet - Statechart case,” in Sixth
Transformation Tool Contest (TTC 2013), ser. EPTCS, 2013, to appear.

184

A. NMF

This chapter briefly introduces NMF, an open-source project to provide support for model-
driven techniques on the .NET platform. The abbreviation NMFstands for .NET Modeling
Framework. It is an open-source framework initiated in July 2012 and now hosted on
Codeplex at http://nmf.codeplex.com/. The following sections explain the purpose of
the projects that NMFconsists of.

• Transformations for M2M transformations presented in section A.1

• Optimizations for domain-specific optimizations presented in section A.2 or [Hin13]

• EcoreInterop for EMF interopability presented in section A.3

• Serializations for XMI serialization presented in section A.4

• AnyText, a parser based on language descriptions similar to xText. However, this
project retired.

• Several others projects, including projects for collections and utilities

A.1. Transformations

The Transformations project exists since July 2012. However, it has been subject to
various extensions, improvements, refactorings during this master thesis. Furthermore,
test code has been written as an important contribution to this project that now has a
test code coverage of 80% in terms of covered blocks. It is the project that this thesis is
based on. It will be described in great detail in chapter 7.

A.2. Optimizations

The Optimizations project is a framework to support domain-specific model optimiza-
tion. It has been developed as contribution of this master thesis, however, it is only
described in a separate technical report [Hin13] due to space limitations.

A.3. EcoreInterop

The EcoreInterop is a project to provide interopability support with EMF, especially
the Ecore meta-metamodel. In this way, it provides a code generator that can create

185

http://nmf.codeplex.com/

186 A. NMF

classes representing the metaclasses of an Ecore-metamodel. These classes are further
decorated with attributes that enable the Serializations project to load and save these
models from and to XMI. This interopability was needed to participate in the TTC2013,
as the resulting models were in the Ecore XMI serialization format. The code generation
for Ecore packages is an important use case of NMF Transformations, as it is a model
transformation that targets the metamodel defined in the System.CodeDOM namespace,
much like the ABB case study from chapter 11.

A.4. Serializations

The Serializations project is a framework to easily serialize objects from and to XML.
Unlike the XML-serializer that is contained in the .NET framework, the XML-serializer
from the Serializations project is capable of serializing models with cyclic references.
However, it is still possible to influence the format of the resulting XML files. Furthermore,
the XML document is not kept in memory, but the model is created on-the-fly.

Compared to the EMF builtin serializer, this serializer has some drawbacks, as it is not
capable to load models split among multiple files. Neither is it possible to serialize a model
to multiple files.

186

B. Implementation details on NMF
Transformations

In this chapter, some details on the implementation of NMF Transformations are
presented.

B.1. Test coverage

The whole NMF project currently consists of 1056 test cases. Both NMF Transfor-
mations Core and NTL are covered with 722 unit tests and integration tests. Further
43 test cases test the utilities library NMF Utilities that is also massively used by
NMF Transformations. The other test cases test the NMF Collections and NMF
Optimizations project.

NMF Transformations Core has a test code coverage of 90.22% in terms of covered
blocks. NTL has a code coverage of 68.70% in terms of covered blocks. In terms of the LOC
metric computed by Visual Studio, the tests (5.214 lines) only top the implementation by
roughly a third (3.251 lines for NTL plus 666 lines for NMF Transformations Core),
as tests can be shared across different implementations of an interface.

B.2. More close architecture diagram of NMF Transforma-
tions

The class diagram in figure B.1 shows a more complete overview of the implementation of
NMF Transformations than the diagram presented in section 7.2. However, there are
still some classes missing, including the whole Relational extensions.

187

188 B. Implementation details on NMF Transformations

Figure B.1.: A more complete class diagram

188

C. Implementations of the example
transformation problems using NMF

In this section, implementations using NMFare provided for the example transformation
problems.

C.1. Finite State Machines to Petri Nets

A complete implementation (though without inline code documentation) is presented in
listing C.1 below.

1 using System ;
2 using System . Linq ;
3 using NMF. Transformations ;
4 using NMF. Transformations . Simples ;
5
6 namespace NMF. Transformations . Example
7 {
8 public class FSM2PN : Re f l e c t i veTrans fo rmat ion
9 {

10 public class AutomataToNet : SimpleTransformationRule<FSM.
FiniteStateMachine , PN. PetriNet>

11 {
12 public override void Transform (FSM. Fin i teStateMachine input , PN

. Petr iNet output , ITransformationContext context)
13 {
14 output . ID = input . ID ;
15 }
16 }
17
18 public class StateToPlace : SimpleTransformationRule<FSM. State ,

PN. Place>
19 {
20 public override void Transform (FSM. State input , PN. Place output

, ITransformationContext context)
21 {

189

190 C. Implementations of the example transformation problems using NMF

22 output . ID = input .Name ;
23 i f (input . I s S t a r t S t a t e)
24 {
25 output . TokenCount = 1 ;
26 }
27 else
28 {
29 output . TokenCount = 0 ;
30 }
31 }
32
33 public override void RegisterRequirements ()
34 {
35 CallForEach<FSM. FiniteStateMachine , PN. PetriNet>
36 (fsm => fsm . States ,
37 (pn , p l a c e s) => pn . Places . AddRange(p l a c e s)) ;
38 }
39 }
40
41 public class Trans i t ionToTrans i t ion : SimpleTransformationRule<

FSM. Trans i t ion , PN. Trans i t ion>
42 {
43 public override void Transform (FSM. Trans i t i on input , PN.

Trans i t i on output , ITransformationContext context)
44 {
45 output . Input = input . Input ;
46 }
47
48 public override void RegisterRequirements ()
49 {
50 CallForEach<FSM. FiniteStateMachine , PN. PetriNet>
51 (fsm => fsm . Trans i t i ons ,
52 (pn , t r a n s i t i o n s) => pn . Trans i t i on s . AddRange(t r a n s i t i o n s)) ;
53
54 Require (Rule<StateToPlace >() ,
55 t => t . Star tState , (t , p) =>
56 {
57 t . From . Add(p) ;
58 p . Outgoing . Add(t) ;
59 }) ;
60
61 Require (Rule<StateToPlace >() ,
62 t => t . EndState , (t , p) =>
63 {
64 t . To . Add(p) ;
65 p . Incoming . Add(t) ;
66 }) ;
67 }
68 }
69
70 public class EndStateToTransit ion : SimpleTransformationRule<FSM

. State , PN. Trans i t ion>

190

C.2. Persons to Family Relations 191

71 {
72 public override void Transform (FSM. State input , PN. Trans i t i on

output , ITransformationContext context)
73 {
74 var from = context . Trace . TraceTransformationOutput (Rule<

StateToPlace >() , input) ;
75 output . From . Add(from) ;
76 from . Outgoing . Add(output) ;
77 output . Input = ”” ;
78 }
79
80 public override void RegisterRequirements ()
81 {
82 CallForEach<FSM. FiniteStateMachine , PN. PetriNet>
83 (fsm => fsm . Sta t e s . Where (s => s . IsEndState) ,
84 (pn , endTrans i t i ons) => pn . Trans i t i on s . AddRange(

endTrans i t i ons)) ;
85 }
86 }
87 }
88 }

Listing C.1: An example implementation to transform finite state machines to Petri Nets

C.2. Persons to Family Relations

1 using System ;
2 using System . Linq ;
3
4 using NMF. Transformations ;
5 using NMF. Transformations . Simples ;
6 using NMF. U t i l i t i e s ;
7
8 using Ps = NMF. Transformations . Example . Persons ;
9 using Fam = NMF. Transformations . Example . Fami lyRelat ions ;

10
11 namespace Transformations . Sample . Persons2Fami l i e s
12 {
13 class Persons2Fami lyRelat ions : Re f l e c t i veTrans fo rmat ion
14 {
15 public class Root2Root : SimpleTransformationRule<Ps . Root , Fam.

Root> { }
16
17 public class Person2Female : SimpleTransformationRule<Ps . Person

, Fam. Female>
18 {
19 public override void Transform (Ps . Person input , Fam. Female

output , ITransformationContext context)
20 {
21 output . Husband = context . Trace . TraceTransformationOutput (

Rule<Person2Male >() , input . Spouse) ;
22

191

192 C. Implementations of the example transformation problems using NMF

23 foreach (var c h i l d in context . Trace .
TraceAllTransformationOutputs (Rule<Person2Person >() ,
input . Chi ldren))

24 {
25 c h i l d . Mother = output ;
26 }
27 }
28
29 public override void RegisterRequirements ()
30 {
31 MarkInstant iat ingFor (Rule<Person2Person >() , p => p . Gender ==

Ps . Gender . Female) ;
32 }
33 }
34
35 public class Person2Male : SimpleTransformationRule<Ps . Person ,

Fam. Male>
36 {
37 public override void Transform (Ps . Person input , Fam. Male

output , ITransformationContext context)
38 {
39 output . Wife = context . Trace . TraceTransformationOutput (Rule<

Person2Female >() , input . Spouse) ;
40
41 foreach (var c h i l d in context . Trace .

TraceAllTransformationOutputs (Rule<Person2Person >() ,
input . Chi ldren))

42 {
43 c h i l d . Father = output ;
44 }
45 }
46
47 public override void RegisterRequirements ()
48 {
49 MarkInstant iat ingFor (Rule<Person2Person >() , p => p . Gender ==

Ps . Gender . Male) ;
50 }
51 }
52
53 public class Person2Person : AbstractTransformationRule<Ps .

Person , Fam. Person>
54 {
55 public override void Transform (Ps . Person input , Fam. Person

output , ITransformationContext context)
56 {
57 output . LastName = input .Name ;
58 output . FirstName = input . FirstName ;
59
60 var daughters = context . Trace . TraceAllTransformationOutputs (

Rule<Person2Female >() , input . Chi ldren . Where (c h i l d =>
c h i l d . Gender == Ps . Gender . Female)) ;

192

C.2. Persons to Family Relations 193

61 var sons = context . Trace . TraceAllTransformationOutputs (Rule<
Person2Male >() , input . Chi ldren . Where (c h i l d => c h i l d .
Gender == Ps . Gender . Male)) ;

62
63 foreach (var daughter in daughters)
64 {
65 daughter . S i s t e r s . AddRange(daughters . Except (daughter)) ;
66 daughter . Brothers . AddRange(sons) ;
67 }
68
69 foreach (var son in sons)
70 {
71 son . S i s t e r s . AddRange(daughters) ;
72 son . Brothers . AddRange(sons . Except (son)) ;
73 }
74 }
75
76 public override void RegisterRequirements ()
77 {
78 CallForEach<Ps . Root , Fam. Root>(
79 root => root . Persons ,
80 (root , people) => root . People . AddRange(people)) ;
81 }
82 }
83 }
84 }

Listing C.2: An example implementation to transform people

193

D. Feedback from the TTC 2013

In this section, the plain feedback from the TTC 2013 is reflected.

D.1. Remarks to NMF Transformations

The first thing I want to express is my thanks for all the people I had very interesting
discussions with at the STAF 2013. As sadly, the TTC did not provide much time for
questions, the remarks were often made in the breaks. However, some remarks indeed
changed my way of recognition, but I cannot remember them. Thus, the following presents
an incomplete list:

• The Turing completeness requirement that much of this thesis is based on, is debat-
able. As Sendall and Kozaczynski just presumed this requirement, I did not question
it too much. But indeed, it is hard to tell, whether this is a necessary requirement.
In the meantime I have come to the opinion that it very much depends on how one
defines model transformations. The way I do, basically to also cover transformations
like the Petri Net to State Charts case from section 10, I am pretty sure it is a valid
requirement.

• People asked me, whether I would like to port NMF Transformations to Scala.
While I take this as a compliment for NMF Transformations being worth ported,
I will rather concentrate on the extensions roughly described in section 7.5.

• A good pointer was to try NTL with other .NET languages than C#. Indeed, this is
also recommended by [CA08]. To me it is pretty clear that a framework designed to
be used with C# also works fine with Visual Basic. However, as I am writing these
lines, I tried a bit with F#, but although it actually worked, it did not work nicely.

D.2. Evaluation data for the Flowgraphs case

Table D.1 shows the plain evaluation data from the open peer review stage for the Flow-
graphs case. However, this table is still incomplete, as the review form included sev-
eral more fields. The full review data can be accessed under the following url: http:

//goo.gl/jAo4T. Furthermore, the review stage was before the presentation of the solu-
tions at the TTC.

The average scores are printed to the charts in figure D.1. The detailed rankings for the
tasks 1− 4 are shown in the tables D.2, D.3, D.4, D.5 and D.6.

195

http://goo.gl/jAo4T
http://goo.gl/jAo4T

196 D. Feedback from the TTC 2013

Table D.1.: Results of the open peer reviews for the Flowgraphs case

Solution Name Reviewer name O
v
e
ra

ll
e
v
a
lu

a
ti

o
n

O
v
e
ra

ll
e
v
a
lu

a
ti

o
n

c
o
n
fi
d
e
n
c
e

P
a
p

e
r

re
a
d
a
b
il
it

y

F
a
it

h
fu

l
so

lu
ti

o
n

d
e
sc

ri
p
ti

o
n

U
se

fu
ln

e
ss

o
f

tr
a
n
sf

o
rm

a
ti

o
n

la
n
g
u
a
g
e

E
a
se

to
u
se

tr
a
n
sf

o
rm

a
ti

o
n

la
n
g
u
a
g
e

U
se

fu
ln

e
ss

o
f

tr
a
n
sf

o
rm

a
ti

o
n

to
o
l

E
a
se

to
u
se

tr
a
n
sf

o
rm

a
ti

o
n

to
o
l

ATL Anthony Anjorin 4 3 3 5 3 5 3
ATL Jesùs Sànchez Cuadrado 4 4 3 3 4 4 4 4
ATL Tassilo Horn 3 4 4 4 5 4 5 4

Eclectic Georg Hinkel 4 4 5 4 4 4 3 4
Eclectic Tassilo Horn 2 4 3 3 3 3 3 3

eMoflon Fabian Büttner 3 3 3 4 3 3 3 3
eMoflon R Wei and Dimitris Kolovos 3 4 3 4 3 2 3 2
eMoflon Tassilo Horn 1 3 3 4 3 2 3 2

Epsilon Georg Hinkel 4 4 4 4 5 3 3 3
Epsilon Tassilo Horn 4 4 4 4 5 5 5 5

FunnyQT Fabian Büttner 4 4 4 4 4 4 4 4
FunnyQT Jesùs Sànchez Cuadrado 4 4 4 5 4 3 3 3

NMF Anthony Anjorin 4 3 4 3 3 2 3 2
NMF Babajide Ogunyomi and Louis Rose 3 3 4 3 3 2 3 2
NMF Tassilo Horn 3 4 4 4 4 3 4 3

Figure D.1.: Open peer review results of the Flowgraph case

196

D.2. Evaluation data for the Flowgraphs case 197

Table D.2.: Results of the open peer reviews for task 1

Solution Completeness & Correctness Conciseness & Understandability Efficiency

ATL 5.0 4.3 3.5
Eclectic 4.5 4.5 1.0
eMoflon 3.0 2.5 2.5
Epsilon 5.0 4.5 1.0
FunnyQT 5.0 4.5 5.0
NMF 5.0 2.7 5.0

Grand Total 4.58 3.83 3.00

Table D.3.: Results of the open peer reviews for task 2

Solution Completeness & Correctness Conciseness & Understandability Efficiency

ATL 5.0 2.7 3.0
Eclectic 4.0 4.0 1.0
eMoflon 2.5 2.5 2.5
Epsilon 4.0 4.0 1.0
FunnyQT 5.0 4.5 5.0
NMF 5.0 2.7 4.0

Grand Total 4.25 3.39 2.75

Table D.4.: Results of the open peer reviews for task 3.1

Solution Completeness & Correctness Conciseness & Understandability Efficiency

ATL 5.0 3.7 3.5
Eclectic 4.0 4.0 1.0
eMoflon 1.0 1.0 1.0
Epsilon 5.0 4.5 1.0
FunnyQT 5.0 4.0 5.0
NMF 5.0 2.7 3.0

Grand Total 4.17 3.31 2.42

Table D.5.: Results of the open peer reviews for task 3.2

Solution Completeness & Correctness Conciseness & Understandability Efficiency

ATL 5.0 3.0 2.5
Eclectic 4.5 3.5 1.0
eMoflon 1.0 1.0 1.0
Epsilon 4.5 4.0 1.0
FunnyQT 5.0 4.5 5.0
NMF 3.5 3.0 3.0

Grand Total 3.92 3.17 2.25

Table D.6.: Results of the open peer reviews for task 4

Solution Completeness & Correctness Conciseness & Understandability Efficiency

ATL 5.0 3.7 3.5
Eclectic 4.0 3.0 3.0
eMoflon 1.0 1.0 1.0
Epsilon 5.0 4.0 3.0
FunnyQT 5.0 4.0 5.0
NMF 4.0 3.0 3.0

Grand Total 4.00 3.11 3.08

197

198 D. Feedback from the TTC 2013

The results from the TTC conference are printed in table D.7. The data is also presented
as a graph in figure D.2. The results are based on 49 responses to the questionnaire at the
TTC conference1.

Table D.7.: The results from the TTC conference for the Flowgraphs case

Solution name O
v
e
ra

ll
e
v
a
lu

a
ti

o
n

o
f

so
lu

ti
o
n

O
v
e
ra

ll
e
v
a
lu

a
ti

o
n

o
f

p
re

se
n
ta

ti
o
n

F
a
m

il
ia

ri
ty

w
it

h
te

ch
n
o
lo

g
ie

s

U
n
d
e
rs

ta
n
d
a
b
il
it

y
a
n
d

C
o
n
c
is

e
n
e
ss

E
a
se

to
u
se

tr
a
n
sf

o
rm

a
ti

o
n

la
n
g
u
a
g
e

U
se

fu
ln

e
ss

o
f

tr
a
n
sf

o
rm

a
ti

o
n

la
n
g
u
a
g
e

E
a
se

to
u
se

tr
a
n
sf

o
rm

a
ti

o
n

to
o
l

U
se

fu
ln

e
ss

o
f

tr
a
n
sf

o
rm

a
ti

o
n

to
o
l

ATL 3.00 3.57 3.86 2.86 3.57 3.43 3.71 3.71
Eclectic 3.71 3.86 3.14 3.71 3.14 3.71 3.57 3.29
eMOFLON 2.63 3.88 3.50 2.75 2.75 3.38 3.00 3.13
Epsilon 4.00 4.10 3.50 3.70 3.70 4.10 3.90 4.10
FunnyQT 3.63 3.13 2.88 2.63 2.50 3.63 2.50 3.38
NMF 3.33 2.89 2.89 2.89 2.78 3.56 2.89 3.00

Average 3.41 3.57 3.29 3.10 3.08 3.65 3.27 3.45

D.3. Evaluation data for the Petri Nets case

Table D.8 shows the plain evaluation data from the open peer review stage for the Flow-
graphs case. However, this table is still incomplete, as the review form included sev-
eral more fields. The full review data can be accessed under the following url: http:

//goo.gl/5Wihy. Furthermore, the review stage was before the presentation of the solu-
tions at the TTC.

The average scores for each solution are printed in figure D.3. Furthermore, table D.9
shows the results of the open peer reviews in terms of the tool capabilities. However, only
few solution papers put notes on these capabilities, as most of the tools do not support
these capabilities. Thus, the evaluation of the tool capabilities is in many cases based
on guessing of the reviewers that hardly know the entire transformation tool. The tool
capabilities were clarified during the TTC itself.

Furthermore, table D.10 shows the performance results for some of the performance mod-
els. These performance figures show the results of the initial solutions. In case of NMF,
major performance improvements were accomplished after the TTC by switching the col-
lection implementation to unordered hash sets. Thus, the table D.10 also includes a row
for the improved solution of NMF. The TTC version used ordered sets as the input models
were given in a format that used index-based referencing scheme due to a performance bug
in EMF. NMF Serializations then expects the model to have an index-based access.

1http://goo.gl/tu9jY

198

http://goo.gl/5Wihy
http://goo.gl/5Wihy
http://goo.gl/tu9jY

D.3. Evaluation data for the Petri Nets case 199

Figure D.2.: The results from the TTC conference for the Flowgraphs case

Table D.8.: Results of the open peer reviews for the Petri Nets to State Charts case

Solution Name Reviewer name O
v
e
ra

ll
e
v
a
lu

a
ti

o
n

O
v
e
ra

ll
e
v
a
lu

a
ti

o
n

c
o
n
fi
d
e
n
c
e

P
a
p

e
r

re
a
d
a
b
il
it

y

F
a
it

h
fu

l
so

lu
ti

o
n

d
e
sc

ri
p
ti

o
n

U
se

fu
ln

e
ss

o
f

tr
a
n
sf

o
rm

a
ti

o
n

la
n
g
u
a
g
e

E
a
se

to
u
se

tr
a
n
sf

o
rm

a
ti

o
n

la
n
g
u

a
g
e

U
se

fu
ln

e
ss

o
f

tr
a
n
sf

o
rm

a
ti

o
n

to
o
l

E
a
se

to
u
se

tr
a
n
sf

o
rm

a
ti

o
n

to
o
l

AToMPM Albert Zündorf 4 5 4 4 4 4 4 4

FunnyQT Albert Zündorf 5 5 4 4 4 2 4 2
FunnyQT Benedek Izsò 5 4 5 5 4 4 5 5
FunnyQT Georg Hinkel 5 4 4 5 5 3 4 4

IncQuery Albert Zündorf 4 5 3 3 3 3 3 3
IncQuery Tassilo Horn 2 4 4 4 4 2 4 2

NMF Albert Zündorf 4 5 3 3 3 3 3 3
NMF Kevin Lano 4 3 3 4 3 3 3 3
NMF Tassilo Horn 3 4 4 4 4 4 4 4

SDMlib Benedek Izsò 2 4 4 4 2 1 1 1
SDMlib Georg Hinkel 4 3 2 3 4 3 3 5
SDMlib Tassilo Horn 3 4 2 3 3 2 3 2

UML-RSDS Albert Zündorf 4 5 3 4 4 3 4 3
UML-RSDS Tassilo Horn 3 4 4 3 4 4 2 1

199

200 D. Feedback from the TTC 2013

Figure D.3.: The results from the open peer reviews for the Petri Net to State Charts case

Table D.9.: Results of the open peer reviews in terms of tool capabilities

S
ol

u
ti

on
N

am
e

R
ev

er
sa

b
il
it

y

C
h
a
n

ge
P

ro
p
ag

at
io

n

R
ef

ac
to

ri
n
g

S
u
p

p
or

t

D
eb

u
g
gi

n
g

S
u

p
p

o
rt

S
im

u
la

ti
on

S
u
p

p
or

t

AToMPM 3.0 3.0 3.0 3.0 3.0
FunnyQT 1.7 1.7 2.3 2.3 1.5
IncQuery 4.0 3.0
NMF 1.0 2.0 2.3 2.7 1.5
SDMlib 1.0 1.5 2.5 3.5 1.5
UML-RSDS 5.0 2.0 3.0 3.0 1.0

Grand Total 2.33 2.36 2.63 2.92 1.70

200

D.3. Evaluation data for the Petri Nets case 201

After the TTC, the initial model versions were used instead that had an id-based referenc-
ing scheme in the XMI files and thus could be supported by model collections that do not
provide an index-based access. However, the id-based referencing scheme still has a worse
performance for deserialization. From the 521s to transform the largest test case, 488.7s
were used to load the model and further 18.3s were used to save the target model back to
a file. Thus, the transformation only took as less as 13.5s.

Table D.10.: The performance results from the initial solutions

Solution Name sp200 sp1000 sp40000 sp200000

Epsilon 2.020s 19.019s
FunnyQT 138ms 212ms 12.010s 114s
GrGen.NET 383ms 597ms 76.000s 2,498s
IncQuery 907ms 3.637s
NMF 119ms 184ms 96.182s 4,584s
NMF (updated) 30ms 169ms 27.212s 521s
SDMlib 113ms 140ms 18.562s 1,440s
UML-RSDS 60ms 360ms

The results from the TTC conference are shown in table D.11. The data is also presented
in figure D.4 in graphical form. The results are based on 36 responses to the questionnaire
from the TTC conference2.

Table D.11.: The results from the TTC conference

Solution name O
v
e
ra

ll
e
v
a
lu

a
ti

o
n

o
f

th
e

so
lu

ti
o
n

O
v
e
ra

ll
e
v
a
lu

a
ti

o
n

o
f

th
e

p
re

se
n
ta

ti
o
n

F
a
m

il
ia

ri
ty

w
it

h
th

e
te

ch
n
o
lo

g
ie

s

U
n
d
e
rs

ta
n
d
a
b
il
it

y
a
n
d

C
o
n

c
is

e
n
e
ss

U
se

fu
ln

e
ss

o
f

tr
a
n
sf

o
rm

a
ti

o
n

la
n
g
u
a
g
e

E
a
se

to
u
se

tr
a
n
sf

o
rm

a
ti

o
n

la
n
g
u
a
g
e

U
se

fu
ln

e
ss

o
f

tr
a
n
sf

o
rm

a
ti

o
n

to
o
l

E
a
se

to
u
se

tr
a
n
sf

o
rm

a
ti

o
n

to
o
l

EMF-IncQuery 3.78 4.00 3.44 3.67 3.89 3.44 3.78 3.78
FunnyQT 4.00 3.71 3.00 3.00 3.43 2.43 3.29 2.57
NMF 3.14 2.86 2.86 2.71 3.29 2.86 3.00 3.14
SDMlib 3.57 3.43 3.57 3.14 3.71 2.71 3.43 2.71
UML-RSDS 2.17 1.83 2.67 2.50 2.50 2.00 1.83 1.33

Average 3.39 3.25 3.14 3.06 3.42 2.75 3.14 2.81

The results for the PN2SC solutions tool support in terms of debugging and refactoring
support are presented in figure D.5.

2http://goo.gl/yU3as

201

http://goo.gl/yU3as

202 D. Feedback from the TTC 2013

Figure D.4.: The results of the TTC conference for the Petri Nets to State Charts case

Figure D.5.: The results of the TTC in terms of tool support for the PN2SC case

202

E. Evaluation data from the ABB case
study

The evaluation sheet is shown in figure E.1.

203

204 E. Evaluation data from the ABB case study

Evaluation sheet for the OPC UA Code generator presentation
Please answer the following questions. The questionnaire is evaluated anonymously and published

only through aggregates.

1. How much experience do you have with model-driven software development?

None

Heard of it

Tried

Used on regular basis

2. Which transformation languages were you using before?

QVT Operational

QVT Relational

ATL

General Purpose

T4

Others

3. How often do you face model transformation problems?

Daily

At least once per
week

At least once per

month

At least once per

year

Less than once

per year

Not yet

4. How understandable was the presentation of the code generator?

Very good

Good

Rather good

Rather poor

Poor

Very Poor

5. How understandable was the presentation of NMF Transformations?

Very good

Good

Rather good

Rather poor

Poor

Very Poor

6. Are you planning to use the code generator?

Most likely

Likely

Maybe

Rather not

Definitely not

Not applicable

7. If so, please rate the effort to adopt the code generator for your scenario!

No adoption required

Minor adoptions
required

Major adoptions

required

Rather new

implementation

Not applicable

8. Please estimate the efforts for the adoptions from the previous question in relation

to general purpose solution!

Significantly less
efforts

Slightly less efforts

Slightly more efforts

Significantly more

efforts

Not applicable

9. How does NMF Transformations affect the following quality attributes compared

with a general purpose solution?
Understandability improved degraded

Modifiability improved degraded

Conciseness improved degraded

Consistency improved degraded

Reusability improved degraded

10. Please feel free to add any comment on the solution or the presentation.

Thank you!

Figure E.1.: The evaluation sheet for the ABB case study

204

F. Metrics for transformations written in
NMF Transformations

This chapter discusses how existing maintance metrics apply for transformations written
in NMF Transformations. At first, several metrics measuring the maintainability of
an object-oriented design are reviewed in section F.1. Afterwards, we will review some
metrics originally created for model transformation languages like ATL or QVT in section
F.2.

F.1. Metrics for object-oriented design

NMF Transformations is an internal DSL for programming languages that follows
the e.g. object-oriented programming paradigm (leaving aside that C# and Visual Basic
nowadays support multiple programming paradigms). This makes model transformations
written in NMF Transformations candidates for metrics specified for object-oriented
code. Some of these metrics will be evaluated in this section for their usage when writing
model transformations with NTL. Especially, the Transform method of the transforma-
tion rules is a target for traditional object-oriented code metrics, as implementations of
this method use the benefits arising from the alternative computational model of NMF
Transformations, but essentially, they are represented by traditional imperative object-
oriented code and thus candidates for code metrics designed for this paradigm.

There are a lot of metrics available for object-oriented imperative code. Some metrics focus
on the imperative nature of method implementations and concentrate on concepts from
procedural programming, while others focus on the rather specific properties of object-
oriented design, such as inheritance. Many of these object-oriented metrics have been
originally defined or evaluated for object-oriented progarmming in [CK91, CK94] and many
of them have gained popularity among developers. In this section, we will talk about the
applicability of these metrics for model transformations using NMF Transformations.
We will concentrate on the metrics that are implemented within Visual Studio1 for three
reasons: The first reason is that obviously there is a tooling available that measures them.
As second reason, these metrics have been implemented within Visual Studio mainly be-
cause of their wide acceptance and popularity among developers. Finally, any developer
that will use NMF Transformations to write model transformations will usually use
Visual Studio and thus eventually stumble on these metrics. The results of these metrics

1http://msdn.microsoft.com/en-us/library/bb385914.aspx

205

http://msdn.microsoft.com/en-us/library/bb385914.aspx

206 F. Metrics for transformations written in NMF Transformations

can be combined with the static code analysis with several code analysis rules. Combined
with the continuous integration abilities of Visual Studio and the Team Foundation Server,
static code analysis can be performed each time a developer checks some code files, pos-
sibly rejecting the check-in because of poor code metric results. Thus, it is important to
review the validity of these results when creating model transformations.

The impacts of these metrics on the RegisterDependencies operation and Transform

method for the solutions of the example transformations from chapter 4 (the complete
solutions can be found in the appendix section C) are summarized in the tables F.1 and
F.2.

Metric Min Max Mean Standard error

Maintainability Index 58 94 80.54 14.00

Cyclomatic Complexity 1 13 3.92 3.48

Class Coupling 2 19 6.83 5.27

Lines of Code 1 10 3.30 2.73

Table F.1.: The code metrics measured for the RegisterDependencies method

Metric Min Max Mean Standard error

Maintainability Index 57 95 86.34 10.96

Cyclomatic Complexity 1 2 1.17 0.38

Class Coupling 3 18 5.55 3.32

Lines of Code 1 13 2.31 2.83

Table F.2.: The code metrics measured for the Transform method

The following sections will analyze the impacts of NTL to these metrics in depth.

F.1.1. Depth of Inheritance

Originally proposed in [CK91], the Depth of Inheritance (DIT) of a class measures the
longest path from a class to its ancestor. This metric is extended to a DIT of a whole
assembly or project by taking the maximum DIT of the classes contained in that project or
assembly. It has been shown that the DIT correlates with the probability of fault detection
[BBM96, SK03b].

The problem with finding a proper threshold for the DIT is that the DIT exceeds a
threshold of 5 or 6 only in rare occasions. Thus, even evalutaing the data of Eclipse
2.0, Shatnawi was unable to provide a threshold for the acceptable risk level for the DIT
metric, as this metric simply lacks of variance [Sha10]. However, several articles apart
from academia suggest a threshold of 5 to 6. Indeed, Microsoft released a code analysis
rule CA15012 warning developers to ”Avoid excessive use of inheritance” when the DIT
reaches a value of 6.

The problem with the DIT in the context of NMF Transformations is that the class
SimpleTransformationRule already has a DIT of 4. This means that a transformation
rule specified using this class as base class already has a DIT of 5, which is the maxi-
mum allowed DIT without getting the CA1501 validation exception. However, the class
AbstractTransformationRule that simply represents that a transformation rule must be
instantiated and must not create an output inherits from SimpleTransformationRule so
that any transformation rule using this class (which is intended for abstract transformation

2http://msdn.microsoft.com/en-us/library/ms182213.aspx

206

http://msdn.microsoft.com/en-us/library/ms182213.aspx

F.1. Metrics for object-oriented design 207

rules) automatically has a DIT of 6, so that Visual Studio will suggest the transformation
developer to ”Avoid excessive use of inheritance”.

Indeed, the NMF Transformations-solution to the Flowgraphs case that will be de-
scribed in 9 includes several transformation rules that expose a DIT of 6. All of these
classes represent transformation rules that act as hubs, i.e. the bodies of these classes is
empty and they only consist of the compiler-generated constructor. As the transforma-
tion involved in the Petri Nets to State Charts case does not employ instantiation, but
instead uses transformation rules that inherit from SimpleTransformationRule, it does
not contain a class with a DIT of 6.

Hence, the DIT is not applicable to model transformations written in NMF Transfor-
mations, as using the intended way to specify an abstract transformation rule already
dominates the DIT for the whole project. This even has the consequence that the accord-
ing analysis rule CA1501 is better turned off for projects incorporating NMF Transfor-
mations.

F.1.2. Cyclomatic Complexity

The cyclomatic complexity originally proposed by McCabe in 1976 [McC76] for graphs
measures the structural complexity by calculating the amount of different paths in a graph.
This is used as a code metric by considering the flow graph (V,E) of a method. The
cyclomatic complexity of that method is then defined as

CC := |E| − |V |+ 1,

where V denotes the nodes of the flow graph and E denotes its edges. Details on how to
create flow graphs can be found in section 9, as this was the task of a transformation case
of the TTC2013.

Again, there is a threshold for the Cyclomatic Complexity given in form of a predefined rule
CA15023 to ”Avoid excessive complexity” that is triggered if a method has a Cyclomatic
Complexity above 25.

Cyclomatic complexity is mainly triggered by conditional statements and loops, since
these language constructs make up large varieties of possible paths through a method.
In NMF Transformations, the main methods to specify the behaviour of a model
transformation is the Transform method, which after all is a method like any method in
an OO program. Thus, the Cyclomatic complexity also measures the structural complexity
of such a Transform method similar to any other method that developers would usually
write. Also the intention behind this metric - a method with a higher structural complexity
is more complex to test - als applies to Transform method implementations and thus, this
metric helps transformation developers to prevent them from writing methods that are
difficult to test.

If we consider the RegisterDependencies method, this method is to be used to specify
dependencies. Setting these dependencies may depend on the configuration of the parent
transformation, but in most cases, it is independent from any configuration and thus, the
Cyclomatic Complexity of these methods should be 1. As the Cyclomatic Complexity of a
class, namespace or module is considered the sum of the included methods, the Cyclomatic
Complexity of these RegisterDependencies should not change the overall result, notably.

However, Visual Studio 2012 actually measures the code metrics on IL-code (an interme-
diate representation as a stack machine) instead of C# code. This has a consequence for

3http://msdn.microsoft.com/en-us/library/ms182212.aspx

207

http://msdn.microsoft.com/en-us/library/ms182212.aspx

208 F. Metrics for transformations written in NMF Transformations

lambda expressions, as they are compiled into ternary operators that cache the underlying
delegate objects. As a consequence, the control flow is forked, inducing the cyclomatic
complexity to rise. As a consequence, Visual Studio actually computes a too high Cy-
clomatic Complexity for methods that incorporate lambda expressions. As the API of
NMF Transformations is based on lambda expressions to be used especially in the
RegisterDependencies-method, these methods are affected by this bug. However, this
bug may be fixed in the future independently from the further development of NMF
Transformations and other tools exist that correctly measure the Cyclomatic Com-
plexity.

In the case studies from the sections 9 and 10, the Cyclomatic Complexity reached values
of up to 13 where the correct result would have been 1. However, as the threshold for a
warning of the static code analysis is set to a value of 25, this bug is unlikely to raise a
warning or error for the RegisterDependencies method. The Cyclomatic Complexity of
the Transform-method ranged only between 1 and 2 and thus was uncritical.

F.1.3. Maintainability Index

The maintainability is a heuristic metric trying to express the essence of maintainability in
one number. Unlike the original proposal in [OHA92, OH92] by Oman and Hagemeister,
the definition within Visual Studio4 rescales this index to return values between 0 and 100.

MI = max(0, (171− 5.2 ∗ ln(HV)− 0.23 ∗ (CC)− 16.2 ∗ ln(LOC)) ∗ 100/171),

MI = Maintainability Index HV = Halstead Volume
CC = Cyclomatic Complexity LOC = Lines Of Code.

The Halstead Volume originally proposed by Halstead in 1977 [Hal77] basically meaures
the amount of information that must be understood when reading the code and mainly
consists of the length of the program multiplied by the logarithm of the size of the language
(the amount of used vocabulary). As this metric has originally been proposed long before
object oriented design was known, it aims at procedural code rather than object-oriented
design.

Whereas the original proposal of the Maintainability Index (MI) comes in two versions,
with or without considering comments, Visual Studio only integrates the version without
the consideration of inline comments. As a reason, Visual Studio computes these metrics
on the compiled assemblies rather than on source code to keep the metrics comparable
across the borders of .NET languages.

The threshold for the maintainability index lies as low as 20. Values above are considered
to reflect a good maintainability, whereas values below 10 reflect a poor maintainability.
Values below cause to trigger the code analysis rule CA1505 to ”Avoid unmaintainable
code”.

Being an entirely heuristic metric, it is difficult to have an idea of how this metric will
actually impact on anything else than it was intended for. As the Maintainability Index
utilizes the values from the Cyclomatic Complexity metric, it also inherits its problems.
Furthermore, the heuristic nature of the metric makes it fixed upon the area where it is
usually applied, which is imperative methods. It is hard to apply it on any other code
artifact, like declarative methods as RegisterDependencies.

On the other hand, we can also consider the main specification of the transformation, the
Transform method, as an imperative method in an object-oriented design. This makes

4http://msdn.microsoft.com/en-us/library/ms182213.aspx

208

http://msdn.microsoft.com/en-us/library/ms182213.aspx

F.1. Metrics for object-oriented design 209

the Maintainability Index as much applicable to these methods than to any other imper-
ative method and hence, the Maintainability Index following this argument had the same
expressiveness as with any OO code.

In the case studies from the TTC (sections 9 and 10), the Maintainability Index values
ranged from 57 and 95. These values are far above the threshold for a warning. This can
be explained by the fact that these methods also do not perform too complex operations.
The Transform method that achieved the MI of 57 was actually the Transform method of
the transformation rule to transform local variables in the Flowgraphs case, that creates a
string buffer and fills this buffer with the name as well as some static elements and, if any,
the initialization of that variable - which is indeed far more than most other Transform

methods do.

F.1.4. Class Coupling

Class Coupling, originally proposed as Coupling between objects (CBO) in [CK91, CK94]
counts the references from a class to other classes. It counts the different references to
other classes in local variables, parameters, return types, method calls, generic or template
instantiations, base classes, interface implementations, fields defined on external types, and
attribute decorations. Different references mean that all references to a certain class are
counted as one. The rationale behind this metric is that classes ought to have a high
cohesion, but low coupling.

There again is a Microsoft code analysis rule CA15065 to ”Avoid excessive class coupling”.
The threshold used by this rule is a Class Coupling of 80 for a method. Any values below
are considered representing a maintainable method. Values above 95 are considered to
cause a poor maintainability.

There again, the Transform-method and the RegisterDependencies-method can be treated
like any other object-oriented method and thus, the metric has its original expressiveness.

The values for the class coupling in the TTC case studies ranged from values as low as 2
to values up to 18, so there there is a lot more coupling possible before a warning arises.

F.1.5. Lines of Code

The Lines of Code (LOC) metric as implemented in Visual Studio measures the lines of
IL-code that is produced by a piece of code and estimate the lines of C#-code that is
necessary to produce such IL-code. Thus, this metric mainly measures the size of the
project, where it does not count additional line breaks or comments. The advantage of
measuring the IL-code representation is that this measure is independent from line breaks.
Unlike IL-code, languages like C# or Java allow arbitrary many statements to be written
in a single line. However, as metadata in general do not count as IL code, an interface
definition has not a single line of code. In fact, the definition of the trace interface of NMF
Transformations is written in a C#-file with 625 lines (including comments), but does
not count towards the LOC metric in Visual Studio.

As writing a transformation with NMF Transformationsaims to modularize a model
transformation by including a structure made up of transformation rules, the code that is
executed inside the structure tends to get smaller. However, transformations can get very
complex and the structure of transformation rules might not always be appropriate, as for
example in the Petri Nets to State Charts case study, where only the initialization can be
properly supported by NMF Transformations. In such cases, it is important to keep
the transformation code maintainable.

5http://msdn.microsoft.com/en-us/library/bb397994.aspx

209

http://msdn.microsoft.com/en-us/library/bb397994.aspx

210 F. Metrics for transformations written in NMF Transformations

Unlike the other metrics, there is no predefined rule for static code analysis to warn
developers of methods that exceed a certain threshold in their length. However, a method
that performs too many actions is likely to have a high Cyclomatic Complexity or a high
Class Coupling.

In the case studies, most of the RegisterDependencies methods achieved a LOC of 1, as
especially in the Flowgraphs case they often only instantiate other rules. The maximum
LOC in the observed RegisterDependencies and Transform methods within the TTC
case studies was 13, indicating reasonable short method sizes.

F.2. Metrics for transformation languages

Besides metrics for object-oriented code, NMF Transformations also introduces higher-
level abstractions to write model transformations. In fact, most of these abstractions
were introduced in other transformation languages like e.g. QVT-O and QVT-R that
in turn inherited these abstractions from earlier transformation languages. As the QVT
languages matured in the recent years, there are metrics available that try to measure some
maintainability aspects of model transformations written in either of these languages. As
the underlying abstractions are similar, some of these metrics are also applicable for NMF
Transformations.

In his PhD thesis, Marinus van Amstel presented a set of 66 metrics for ATL and another
set of 28 metrics for ASF+SDF6 to assess the quality of model transformation written
in either of these model transformation languages [vA11, vAvdB10, vAvdB11b]. These
metrics, especially the ones for ATL may be candidates for adoption to transformations
written in NMF Transformations. Furthermore, Kapova et al. presented a set of
another 21 metrics suitable for QVT-R. As checking every single metric for its applicability
for model transformations written with NMF Transformations would certainly blow
the limitations for this master thesis, these metrics are not presented in this thesis.

Of course, many of these 115 metrics measure very similar code aspects, event within
one language. For example, the number of rules in ATL is just the sum of the number
of the numbers of rules of each rule kind. Furthermore, NMF Transformations can
again make use of its host language, as there already are metrics to measure the quality
of the implementations within the important methods, e.g. RegisterDependencies and
Transform. Thus, here we only depict metrics that measure what makes model trans-
formations with NMF Transformations different to those written entirely in ordinary
general purpose code. Most of these difference arise from the alternative computational
model that is the backend of NMF Transformations. Thus, metrics are depicted that
measure important aspects of this computational model.

However, these metrics will only be described here and applied to the case studies from
the chapters 9 and 10. Proper evaluation is required to prove that these metrics uncover
potential maintainability problems. In addition, the metrics presented here will be defined
in a way such that they are pretty much orthogonal, i.e., instead of using dozens of metrics
that catch every detail, only a few metrics are described that try to cover as much main-
tainability issues as possible. As a reason, most developers do not really want to review a
set of 66 metrics to find maintainance issues, as it is hard to review such a great amount
of metrics at once.

A general problem of metrics for NMF Transformations is its nature as an internal DSL
for a Turing-complete general purpose language. The semantic model of NMF Transfor-
mations is built by calling certain methods like Require, Call or MarkInstantiatingFor

6http://www.meta-environment.org/

210

http://www.meta-environment.org/

F.2. Metrics for transformation languages 211

and all their different versions. However, static analysis can detect such method calls, but
it cannot review the parameter values when such a method is called. This is an immedi-
ate consequence of the Halting problem. However, as C# is a type safe language, static
code analysis can at least make some assertions on the type of the parameters. In many
cases, this is sufficient to compute the necessary metrics, but this might not always be
the case. In a similar way, the transformation rules inside a transformation are created
within a method call. As a result, metrics that incorporate any of these features cannot be
done through static code analysis only. Many metrics will require dynamic code analysis,
i.e. executing the code. However, this is only possible on certain assumptions and hence,
many metrics will need user interaction in some circumstances and may only be computed
automatically under certain circumstances.

As the availability of software code metrics is an important factor to maintainability, the
design decision becomes crucial at this point, as code metrics largely cannot be guaranteed
to be computable automatically.

F.2.1. Size metrics

Usually the starting point for metrics is size metrics, such as the number of rules or the
number of patterns. However, in object-oriented design, this metric is mostly ignored as no
conclusions on the maintainability can be drawn. A high number of classes does usually
stand for a large project. However, the whole project can also be put all in one class,
meaning that the software is actually created in a procedural manner rather than utilizing
an object-oriented design - which results in a low number of classes, but is considered
harmful to the maintainance, as it does not employ advantages of object-oriented design,
such as data encapsulation. However, if one assumes a certain way of splitting code into
classes, for example multiple code projects from a single developer, then Number of Classes
indeed gives a good overview on the size of a project.

The size of a project is rather measured in general code metrics like lines of code. However,
as explained in section F.1.5, some implementations of this metric only measure the code,
which does not include interface declarations as they only define metadata. Again, as
transformation developers are likely to use Visual Studio as their IDE, it is important to
note that Visual Studio also does not count metadata towards the LOC metric.

The equivalent of a Number of Classes metric in NMF Transformations would be some-
thing like Number of Rules and Number of Patterns. These metrics suffer from the same
effect as the Number of Classes. When solving a transformation problem with a model
transformation specified in NMF Transformations, it is an important design question
which requirements are implemented with transformation rules - and which of them are
not, but solved in general purpose code instead, e.g. inside the Transform method. It is
yet unclear, whether a good design decision is dependent on the transformation problem
or rather a question of personal flavour. To answer this question, user studies have to
be conducted where several transformation problems are implemented by several trans-
formation developers. Such a user study is not part of this thesis. As a consequence,
the applicability of size metrics like Number of Rules or Number of Patterns cannot be
reviewed as important research questions so far must be left unanswered.

F.2.2. Rule coupling

A factor that predictably impacts the maintainability of a model transformations even
without a large user study across different transformation problems is the coupling of the
transformation rules, i.e. how many transformation rules are referenced by a certain trans-
formation rule. This is reflected by the dependencies of a transformation rule. However,

211

212 F. Metrics for transformations written in NMF Transformations

there are some more question on how to measure the coupling between transformation
rules. Most importantly, it is important to decide where to count inversed dependencies.
As such dependencies are to be maintained in the transformation rule that defines these
dependencies, it is more logical to count them for the transformation rules that define
them, insetad of the transformation rules that actually own the resulting dependency.
Furthermore, NMF Transformations allows to specify dependencies to transformation
rules that are not known to the developer by just specifying the type signature of these
transformation rules. These depencies may result in arbitrary many dependencies. As a
consequence, a reusable transformation rule might have different values of rule coupling in
different transformations. If a transformation can be instantiated without parameters (us-
ing a constructor that does not require parameters), these possible multiple dependencies
can be resolved and the exact number of dependent transformation rules can be obtained.
If however this is not possible, we can only assume there is only one dependent transforma-
tion rule. A similar problem is that transformation rules may define dependencies based
on some configuration properties. In such cases, we can simply assume that every actual
call to any version of Require or Call counts as a dependency, regardless of whether this
dependency is set for a specific instance of the transformation.

Another way in which a transformation rule can use another transformation rule is via the
trace functionality of NMF Transformations. There again, we can hope that static
code analysis can detect the transformation that is actually called, but this is not always
possible.

F.2.3. Depth of Instantiation Tree

Similar to object-oriented design, where deep inheritance trees have been shown to be
harmful for the maintainance of a software project [BBM96], also transformation rules
form instantiation trees. As transformation rule instantiation is a concept to overcome
problems when transforming inheritance hierarchies, the tree tends to reflect the inheri-
tance hierarchy in either source or target metamodel. However, the instantiation tree can
also represent a mixture of both inheritance hierarchies. Consider for example the second
exaple transformation case as in section 4.2. In the NMF Transformations solution
of this scenario, the instantiation tree of the transformation rules transforming persons is
actually higher than the inheritance tree in the source metamodel (where no inheritance
relations are used at all). Consider the case where Person had some base class in the
source metamodel that is not represented in the target metamodel and at some point of
the transformation, it is required to trace instances of this base class. The easiest way to
accomplish this is to introduce a new abstract transformation rule that transforms that
base class into objects and let the transformation rule Person2Person instantiate that
rule. As a result, the instantiation tree of the resulting transformation rules is higher than
each of the inheritance hierarchies in the source and target metamodels.

Similar to the Rule Coupling metric, this metric is only automatically computable where
the transformation rule instantiations can be inferred by static code analysis.

Like the discussion for the Depth of Inheritance, it can be argued that values of the Depth
of Instantiation Tree that exceed a certain threshold must be considered as being harmful
to the maintainability of a model transformation. As transformation rule instantiation is
a concept so similar to inheritance, a good starting point would probably be the threshold
for the Depth of Inheritance, which is 6 when following the Microsoft static code anaylsis
rules. However, the fixation of this threshold requires further research.

212

List of Figures

4.1. A metamodel for finite state machines . 30

4.2. A Metamodel for Petri Nets . 30

4.3. The People metamodel . 31

4.4. The FamilyRelations metamodel . 32

7.1. The conceptual abstract syntax of NMF Transformations 50

7.2. The abstract syntax of NMF Transformations (fragment) 53

7.3. The architecture of NMF Transformations from the large 54

7.4. Core concepts of NMF Transformations . 54

7.5. The inheritance hierarchy of GeneralTransformationRule (simplified) 59

7.6. The classes involved in the Relational Extensions 74

9.1. The metaclasses of the Flowgraph metamodel describing the structure of a
method [Hor13] . 94

9.2. The metamodel classes of the Flowgraph metamodel related to control flow
[Hor13] . 94

9.3. The Flowgraphs metamodel elements related to data flow [Hor13] 95

9.4. The TGG rule for an assignment in eMoflon 108

9.5. The overall evaluation of the Flowgraphs case 111

9.6. The usefulness results of the Flowgraphs case 111

9.7. The combined assessment of understandability and conciseness at the TTC
conference . 121

10.1. The metamodels for Petri Nets and State Charts [GR13] 124

10.2. The impact of the AND rule to the Petri Net and the State Chart model
[GR13] . 124

10.3. The impact of the OR rule to the Petri Net and State Chart model [GR13] 125

10.4. Visualization of the transformation patterns in the SDMLib solution [Z1̈3] . 136

10.5. The graph transformation rules to perform the AND rule with AToMPM . 137

10.6. The overall evaluation results from the TTC conference for the PN2SC case 138

10.7. The results for the perceived debugging support for the PN2SC case 139

10.8. The perceived refactoring support as collected at the TTC conference for
the PN2SC case . 141

10.9. The results of understandability and conciseness for the PN2SC case 144

11.1. A motor type in the OPC UA Address Space Model [MLD09] 148

11.2. The intended code generator at a glance . 150

11.3. The rules of the code generator and their interactions 154

11.4. The inner structure of the InstanceNode2Property rule 158

11.5. The results for question 1 . 163

11.6. The results for question 2 . 163

11.7. The results for question 3 . 163

213

214 List of Figures

11.8. The results for question 4 . 164
11.9. The results for question 5 . 164
11.10.The results for question 6 . 164
11.11.The results for question 7 . 165
11.12.The results for question 8 . 165
11.13.The results for question 9 . 165

B.1. A more complete class diagram . 188

D.1. Open peer review results of the Flowgraph case 196
D.2. The results from the TTC conference for the Flowgraphs case 199
D.3. The results from the open peer reviews for the Petri Net to State Charts case200
D.4. The results of the TTC conference for the Petri Nets to State Charts case . 202
D.5. The results of the TTC in terms of tool support for the PN2SC case 202

E.1. The evaluation sheet for the ABB case study 204

214

List of Tables

2.1. Comparison of MTLs . 12

7.1. Overview on the trace functionality to return the results 65
7.2. Overview on the trace functionality to return the computations 66
7.3. Special dependencies for further functionality related to trace support . . . 67

9.1. Implementation size of the Flowgraphs case 119

10.1. NLOCs of the Petri Nets to State Charts case solutions 143

12.1. Performed validation for NMF Transformations 169

D.1. Results of the open peer reviews for the Flowgraphs case 196
D.2. Results of the open peer reviews for task 1 197
D.3. Results of the open peer reviews for task 2 197
D.4. Results of the open peer reviews for task 3.1 197
D.5. Results of the open peer reviews for task 3.2 197
D.6. Results of the open peer reviews for task 4 197
D.7. The results from the TTC conference for the Flowgraphs case 198
D.8. Results of the open peer reviews for the Petri Nets to State Charts case . . 199
D.9. Results of the open peer reviews in terms of tool capabilities 200
D.10.The performance results from the initial solutions 201
D.11.The results from the TTC conference . 201

F.1. The code metrics measured for the RegisterDependencies method 206
F.2. The code metrics measured for the Transform method 206

215

Listings

3.1. A transformation in QVT-O . 17
3.2. A example Mapping in QVT-O . 18
3.3. The structure of a QVT-O mapping . 18
3.4. Definition of Intermediate Properties and Classes in QVT-O 19
3.5. A disjunct mapping in QVT-O . 19
3.6. Transformation composition in QVT-O . 20
3.7. A QVT-R relation with two domains . 21
3.8. A QVT-R transformation with top relations and non-top relations 22
3.9. Local type inference examples . 22
3.10. Object initializers in C# . 23
3.11. Using anonymous types in C# . 23
3.12. Usage of Lambda-expressions for higher-order functions 24
3.13. An implementation for the bind function of the IEnumerable<T> monad . 24
3.14. An implementation for the bind operation of the IEnumerable<T> monad 25
3.15. Using the IEnumerable<T> monad with the LINQ query syntax 25
3.16. Using the IEnumerable<T> monad with the LINQ query syntax 25
3.17. Using the IEnumerable<T> monad with the LINQ query syntax, enhanced 26
3.18. The signature of the Where extension method 26
3.19. The signature of the Select extension method 26

7.1. A model transformation using the ReflectiveTransformation class 58
7.2. Invoking a model transformation . 58
7.3. The transformation rule FiniteStateMachine2PetriNet 60
7.4. Registering a dependency to State2Place . 61
7.5. The rule State2Place with reversed dependency 62
7.6. The rule State2Place with reversed dependency and persistor 63
7.7. The rule Transition2Transition with multiple dependencies 63
7.8. An incomplete EndState2Transition rule . 64
7.9. The Transform method of the EndState2Transition rule 66
7.10. An implementation sample for People to FamilyRelations without inheri-

tance support . 68
7.11. An implementation sample for People to FamilyRelations with instantiation 69
7.12. Applying pattern matching to create households 71
7.13. The above pattern using a separate filter method 72
7.14. The above pattern using method chaining 72
7.15. Applying pattern matching to create households, updated 73
7.16. Using a lambda expression for more sophisticated filters 73
7.17. A transformation using transformation rules from other assemblies 75
7.18. A transformation using transformation rules from other assemblies 76
7.19. A test case to test the EndState2Transition rule 78

9.1. The example validation DSL from the case description 95

217

218 Listings

9.2. The transformation rule to transform a method 98
9.3. The abstract rule to create text from expressions 99
9.4. The transformation of assignment expressions 99
9.5. The interface of what is interesting regarding control flow 100
9.6. SetControlFlow-method for Blocks . 101
9.7. Deriving the control flow for a method . 101
9.8. The interesting attributes for an Expression 102
9.9. The algorithm to set the control flow . 103
9.10. The initialization algorithm for deriving the data flow 103
9.11. Transforming a method in FunnyQT . 105
9.12. The stmt2item rule in FunnyQT . 105
9.13. The rules to transform a condition in ETL 106
9.14. The M2T-transformation to transform a local variable to string in EOL . . 106
9.15. A transformation rule to transform a WhileLoop element in ATL 108
9.16. The helper to obtain the text of an assignment expression in ATL 108
9.17. Transforming a WhileLoop element in Eclectic 109
9.18. Retrieving the attribution of a local variable statement in Eclectic 109
9.19. The method to transform a condition statement in plain C# 110
9.20. A snippet for a transformation rule in Epsilon 113

10.1. The transformation rules to transform the Petri Net 127
10.2. The transformation rules for a place . 128
10.3. The transformation of a transition . 129
10.4. Code to check whether the AND rule is applicable 130
10.5. Code to apply the AND rule to the PetriNet 130
10.6. Code to apply the AND rule to the statechart model 131
10.7. Code to check whether any OR rule is applicable now 131
10.8. The code to check whether the OR rule is applicable 132
10.9. The code to apply the OR rule to the PetriNet 132
10.10.The code to apply the OR rule to the state chart model 132
10.11.The code to check whether any AND rule is now applicable 133
10.12.The implementation of the OR rule in Clojure 134
10.13.Strongly typed pattern objects in SDMLib 135
10.14.The AND rule pattern in EMF-IncQuery 137

11.1. The rule to transform object nodes into fields 153
11.2. The Node2TraceEntry rule that creates a trace entry for each transformation156
11.3. A helper method to set more sophisticated dependencies 157
11.4. An example how a code generator extension can override the code generation

for properties . 158
11.5. The test initialization for the unit tests for the Transform method 160
11.6. Testing the Transform method of the ObjectNode2Field rule 160
11.7. Testing the call dependencies of the ObjectNode2Field rule 162

C.1. An example implementation to transform finite state machines to Petri Nets 189
C.2. An example implementation to transform people 191

218

Abbreviations

.NET A software development platform provided by Microsoft (actu-
ally not an abbreviation).

3GPL 3rd Generation General Purpose Language. An object-oriented
general purpose language like C# or Java.

ABB Asea Brown Boveri Ltd. A large multinational corporation op-
erating in power and automation technologies.

API Application Programming Interface.
ATL ATLAS Transformation Language. A prominent transforma-

tion language implemented as external DSL.
CLR Common Language Runtime. The virtual machine that exe-

cutes code written in managed languages like C# or Visual
Basic.NET

CLS Common Language Specification. The specification of the mini-
mum feature set for .NET languages. A library where the pub-
lic API conforms to the CLS can be consumed by any .NET
language.

DSL Domain Specific Language. A language specific to a domain
with limited expressiveness [Fow10]

EMF Eclipse Modeling Framework. A framework to support MDE
on the Eclipse platform [MEG+03].

EOL Epsilon Object Language. The general purpose modification
language within the Epsilon language family.

ETL Epsilon Transformation Language. The transformation lan-
guage within the Epsilon language family.

GUI Graphical User Interface.
ICMT International Conference on Model Transformations.
IDE Integrated Development Environment. An editor with rich tool

support for development such as Visual Studio or Eclipse.
IL Intermediate Language. A byte code to the CLR stack machine.
LINQ Language Integrated Query. An internal DSL for .NET lan-

guages that is implemented as a monad, see section 3.3.5 for
details.

LOC Lines of Code. A language independent code metric that mea-
sures the size of an implementation.

M2M Model-to-Model Transformations. Model transformations that
take one or multiple models as inputs as create one or many
models as outputs

M2T Model-to-Text Transformations. Model transformations that
create arbitrary text out of models.

MDE Model Driven Engineering. See section 3.1
MDSD Model Driven Software Development. See section 3.1
MOF Meta Object Facility. A meta-metamodel by the OMG

219

220 Abbreviations

MTL Model Transformation Language. A DSL written specifically
for model transformations.

NMF .NET Modeling Framework. An open-source project to provide
support for model-driven techniques on the .NET framework

NTL NMF Transformations Language. An internal DSL for easier
use of NMF Transformations

OCL Object Constraint Language. A side-effect free query language.
OMG Object Management Group. A standardization organization,

famous for e.g. the MOF standard.
PN2SC The Petri Nets to State Charts case at the TTC 2013.
POCO Plain Old CLR Object. An object loaded to the CLR that does

not use features of a specific SDK, but only relies on features
of the language.

QVT Query-View-Transformation. See section 3.2.
SDMLib Story Driven Modeling Library. An internal DSL to work on

the Fujaba tool.
SDK Software Development Kit. A framework to allow developers

work with an existing application.
STAF Software Technologies: Applications and Foundations. A fed-

erated event that hosted the ICMT and the TTC 2013.
T4 Text-to-Text-Transformation. The M2T implementation of Mi-

crosoft that is included in Visual Studio.
TTC Transformation Tool Contest. A contest for MTLs to investi-

gate their advantages and disadvantages.

220

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Structure of this Master Thesis
	1.3 Contribution
	1.4 How to read this thesis

	2 Related Work
	2.1 MTLs with external DSL
	2.2 Model Transformation as Graph Transformation
	2.3 MTLs with internal DSL
	2.4 Comparison of MTLs
	2.5 Maintainability of model transformations

	3 Foundations
	3.1 Model-driven software development
	3.2 Query-View-Transformation (QVT)
	3.2.1 QVT Operational
	3.2.2 QVT Relational

	3.3 C# language features
	3.3.1 Local type inference
	3.3.2 Initialization lists and anonymous types
	3.3.3 Extension methods
	3.3.4 Lambda-expressions (Closures)
	3.3.5 Monads

	3.4 Quality Attributes of Model Transformations
	3.4.1 Understandability
	3.4.2 Modifiability
	3.4.3 Reusability
	3.4.4 Modularity
	3.4.5 Completeness
	3.4.6 Consistency
	3.4.7 Conciseness

	4 Example Transformations
	4.1 Finite State Machines to Petri Nets
	4.2 People to Family Relations

	5 Supporting model transformation with dedicated languages
	5.1 The domain of model transformation
	5.2 MTLs as External DSLs
	5.3 MTLs as Internal DSLs
	5.4 Conclusions

	6 Model Transformation Problems
	6.1 Correspondence & tracing
	6.1.1 Problem description
	6.1.2 Solutions in general purpose code
	6.1.3 Solutions in QVT-O and QVT-R

	6.2 Cyclic object models
	6.2.1 Problem description
	6.2.2 Solutions in general purpose code
	6.2.3 Solutions in QVT-O and QVT-R

	6.3 Inheritance
	6.3.1 Problem description
	6.3.2 Solutions in general purpose code
	6.3.3 Solutions in QVT-O and QVT-R

	6.4 Patterns
	6.4.1 Problem description
	6.4.2 Solutions in general purpose code
	6.4.3 Solutions in QVT-O and QVT-R

	6.5 Optimization Tasks
	6.5.1 Problem description
	6.5.2 Solutions in general purpose code
	6.5.3 Solutions in QVT-O and QVT-R

	6.6 Higher-Order Transformations
	6.6.1 Problem description
	6.6.2 Solutions in general purpose code
	6.6.3 Solutions in QVT-O and QVT-R

	6.7 Transformation Composition
	6.7.1 Problem description
	6.7.2 Solutions in general purpose code
	6.7.3 Solutions in QVT-O and QVT-R

	6.8 Testing
	6.8.1 Problem description
	6.8.2 Solutions in general purpose code
	6.8.3 Solutions in QVT-O and QVT-R

	6.9 Conclusions

	7 NMF Transformations
	7.1 Abstract syntax
	7.2 Architecture of NMF Transformations Core
	7.3 Stages of the transformation
	7.3.1 Initialization
	7.3.2 Create Patterns
	7.3.3 Execute dependencies
	7.3.4 Create delayed outputs
	7.3.5 Transform
	7.3.6 Finish Patterns

	7.4 NMF Transformations Language (NTL)
	7.4.1 Specifying Transformations
	7.4.2 Specifying Transformation Rules
	7.4.3 Dependencies between transformation rules
	7.4.4 Tracing
	7.4.5 Transformation rule instantiation
	7.4.6 Relational Extensions
	7.4.7 Composing Transformations
	7.4.8 Testing
	7.4.9 Extensibility

	7.5 Drawbacks & Future Work
	7.5.1 Trace serialization
	7.5.2 Change propagation
	7.5.3 Bidirectionality
	7.5.4 Model synchronization
	7.5.5 Graphical syntax
	7.5.6 Test case generation
	7.5.7 Parallelism

	7.6 Conclusions

	8 Impact of NTL language features to maintainability
	8.1 Understandability
	8.2 Modifiability
	8.2.1 Discoverability
	8.2.2 Change impacts
	8.2.3 Debugging
	8.2.4 Testing
	8.2.5 Refactorings

	8.3 Reusability
	8.4 Modularity
	8.5 Completeness
	8.6 Consistency
	8.7 Conciseness

	9 TTC Flowgraphs case study
	9.1 Case Overview
	9.2 Planned validation
	9.2.1 Validation criteria
	9.2.2 Validation procedure

	9.3 NMF solution
	9.3.1 Task 1: Initialization
	9.3.2 Task 2: Deriving Control Flow
	9.3.3 Task 3: Deriving Data Flow
	9.3.3.1 Task 3.1: Extended Initialization
	9.3.3.2 Task 3.2: Deriving Data Flow

	9.3.4 Task 4: Validiation

	9.4 Other solutions
	9.4.1 FunnyQT
	9.4.2 Epsilon
	9.4.3 eMoflon
	9.4.4 ATLAS Transformation Language (ATL)
	9.4.5 Eclectic

	9.5 General purpose solution
	9.6 Results on the TTC
	9.7 Validation
	9.7.1 Modifiability
	9.7.1.1 Discoverability
	9.7.1.2 Change Impact

	9.7.2 Consistency
	9.7.3 Conciseness
	9.7.4 Understandability

	9.8 Conclusions

	10 TTC Petri Nets to State Charts case study
	10.1 Case Overview
	10.1.1 Initialization
	10.1.2 Reduction
	10.1.3 Extensions
	10.1.4 Evaluation

	10.2 Planned validation
	10.2.1 Validation criteria
	10.2.2 Validation procedure

	10.3 NMF Solution
	10.3.1 Initialization
	10.3.2 Reduction

	10.4 Other solutions
	10.4.1 FunnyQT
	10.4.2 UML-RSDS
	10.4.3 Story Driven Modeling Library (SDMLib)
	10.4.4 EMF-IncQuery
	10.4.5 AToMPM

	10.5 Results on the TTC
	10.6 Validation
	10.6.1 Modifiability
	10.6.1.1 Debugging support
	10.6.1.2 Refactoring support

	10.6.2 Consistency
	10.6.3 Conciseness
	10.6.4 Understandability

	10.7 Conclusions

	11 Code generator for OPC UA
	11.1 OPC UA
	11.2 The model transformation in theory
	11.3 Planned validation
	11.3.1 Evaluation criteria
	11.3.2 Evaluation procedure

	11.4 Generating code with NMF Transformations
	11.5 Testing
	11.5.1 Transform
	11.5.2 RegisterDependencies

	11.6 Validation
	11.6.1 Evaluation sheet results
	11.6.2 Understandability
	11.6.3 Extensibility

	11.7 Conclusions

	12 Validation Summary
	12.1 Comparison of the case studies
	12.2 Understandability
	12.3 Modifiability
	12.4 Consistency
	12.5 Conciseness

	13 Conclusion
	13.1 Results
	13.2 Assumptions & Limitations
	13.3 Future Work

	Bibliography
	A NMF
	A.1 Transformations
	A.2 Optimizations
	A.3 EcoreInterop
	A.4 Serializations

	B Implementation details on NMF Transformations
	B.1 Test coverage
	B.2 More close architecture diagram of NMF Transformations

	C Implementations of the example transformation problems using NMF
	C.1 Finite State Machines to Petri Nets
	C.2 Persons to Family Relations

	D Feedback from the TTC 2013
	D.1 Remarks to NMF Transformations
	D.2 Evaluation data for the Flowgraphs case
	D.3 Evaluation data for the Petri Nets case

	E Evaluation data from the ABB case study
	F Metrics for transformations written in NMF Transformations
	F.1 Metrics for object-oriented design
	F.1.1 Depth of Inheritance
	F.1.2 Cyclomatic Complexity
	F.1.3 Maintainability Index
	F.1.4 Class Coupling
	F.1.5 Lines of Code

	F.2 Metrics for transformation languages
	F.2.1 Size metrics
	F.2.2 Rule coupling
	F.2.3 Depth of Instantiation Tree

	Abbreviations

