
Enabling Consistency between Software Artefacts
for Software Adaption and Evolution

David Monschein
Karlsruhe Institute of
Technology, Germany

david.monschein@student.kit.edu

Manar Mazkatli
Karlsruhe Institute of
Technology, Germany

manar.mazkatli@kit.edu

Robert Heinrich
Karlsruhe Institute of
Technology, Germany
robert.heinrich@kit.edu

Anne Koziolek
Karlsruhe Institute of
Technology, Germany

koziolek@kit.edu

Abstract—Short development times of software became crucial
to stay competitive. However, the quality should not suffer from
the faster development processes, which is why increasingly more
automation is gaining ground in this context. If models are
involved in the development process and used for performance
prediction, there are delays due to emerging inconsistencies
between different software artifacts. The elimination of these
inconsistencies is a time consuming, complex and error prone
activity. Currently, there are already approaches for automated
consistency preservation of software artifacts. Nevertheless, the
limited scope in terms of supported change scenarios is a
significant disadvantage.

Therefore, we present a comprehensive approach for the
maintenance of consistency between the system design and adap-
tive as well as evolutionary changes. In comparison to existing
approaches, the consistency preservation has been significantly
extended in our approach to cover a multitude of changes
resulting from adaptation and evolution. Ultimately, several
validation steps were integrated into the approach, enabling
continuous assessment regarding the quality of the consistency
preservation. In a case study based evaluation, we measured
the accuracy of the updated models and associated performance
predictions.

Index Terms—Software Architecture, Architecture-based Per-
formance Prediction, Model Consistency, Run-time Model, Self-
Validation, DevOps

I. INTRODUCTION

While software systems are becoming increasingly more
complex, development cycles get shorter and shorter due
to the growing popularity of practices such as DevOps [4].
This is problematic, because due to high dynamics in terms
of changes to the requirements and the infrastructure, there
is the risk that the implemented application (source code)
continuously drifts away from the software design (architecture).
In particular, this drift is driven by software evolution and
adaptation. For example, software adaption includes scenarios
like reconfigurations of the deployment, which are common
and occur frequently. For this reason, it is necessary to ensure
consistency between the system design and adaptive as well as
evolutionary changes. Otherwise, it is challenging to assess the
impact of design decisions. This is important, because quality
characteristics like performance heavily depend on architectural
design decisions.

There are several approaches that can serve as a basis for
architectural decisions. One of them is to measure the effects

of the possible decisions. However, in many cases the effort
would be too high, which is a significant problem (P1). Other
approaches such as the software performance engineering [2,
37] use quantified methods to assess performance aspects
already in early development phases. Commonly, models
are used to represent the architecture of the software and
can provide reliable predictions about quality properties. The
improved planning possibilities are a major advantage of the
models, but a significant drawback is that the modeling process
is time-consuming and challenging (P2). Furthermore, it is
important that accurate models are available at any time, i.e.
during evolution, but also throughout adaptations while the
system is in operation (P3). In order to keep the models up to
date during operation, it is necessary to observe the application,
for example with the help of monitoring techniques. A key
disadvantage of monitoring is the introduced overhead by the
measurements, which can negatively affect the performance of
the observed software (P4). A general disadvantage of using
models is the fact that their quality is uncertain. In other
words, there is no trust in the predictions made on the basis of
the model. One must rely on the model to represent the real
application well (P5).

There are various approaches that address the introduced
problems. These can roughly be divided into three categories
further described in the remainder of the paper. The first
category includes approaches that focus on consistency preser-
vation at Development time (Dev-time) (time frame until the
deployment of an application). The second category covers
approaches that target consistency preservation at Operation
time (Ops-time) (time frame beginning with the deployment).
Procedures that target Dev-time, mainly build upon rules and
associated actions, which define relationships between the
architectural model and the source code [22, 5, 42]. In contrast,
for the techniques that target Ops-time, consistency preservation
relies primarily on the collection of monitoring data and
a subsequent analysis to build an up-to-date architectural
model [3, 24, 44, 10]. Finally, there is a third category,
which consists of approaches that consider the maintenance of
consistency relationships at Dev-time and at Ops-time [26, 18,
20]. However, all three categories of approaches suffer from
gaps in the extent of the consistency preservation; so far, the
system composition has not yet been considered. Furthermore,
automated analyses of the quality of the derived models have
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not been addressed at all or only in prototypical fashion.
In this paper, we present an approach that embeds architec-

ture models in software development and keeps them consistent
throughout evolution and adaption. Detailed investigations
regarding the accuracy of the performance predictions have
been integrated, so called validations, which can be used to
reveal inaccuracies of the models. In addition, these validations
make it possible to adjust the monitoring in order to observe
only the parts of the software that are poorly represented in
the models. Thus, the monitoring overhead can be kept to
a minimum. This approach is an extension of Continuous
Integration of Performance Models (CIPM) [26, 25] and
iObserve [9, 10], which significantly expands the maintenance
of consistency relationships and the self-validation concept. The
objective of the iObserve approach is to enrich an architecture
model created at Dev-time with the help of monitoring data
collected at Ops-time [10]. The CIPM approach considers
Dev-time changes like source code modifications and some
Ops-time changes, with the goal of providing an up-to-date
architectural model for performance prediction [25].

The main contributions of our approach are:

(i) In-depth automated consistency preservation between
system design and adaptive as well as evolutionary
changes. By covering both Dev-time and Ops-time, an
architecture model is available at any point in time and can
be used for performance predictions (P3). In comparison to
existing approaches, the system composition is included in
the process. It is analyzed at Dev-time based on the source
code and at Ops-time based on monitoring events. With
the help of a newly introduced data structure, the so-called
Service-Call-Graph (SCG), the system composition in the
architecture model can now be updated in an automated
way. All in all, the modeling effort can be reduced (P2) and
with the help of accurate models, architecture decisions
can be evaluated in a profound way (P1). Sec. V describes
this enhancement in more detail.

(ii) Extension of the self-validations, based on the CIPM
approach. The scope of self-validations is increased,
recognized inaccuracies are passed into the consistency
preservation process, which allows the process to react to
them (P5). As a result, the maintenance of consistency
relationships becomes more dynamic and can learn from
previous shortcomings. The component of our approach
that realizes this strategy is called Validation Feedback
Loop (VFL) and is introduced in Sec. VI.

(iii) Design and implementation of a transformation pipeline
that uses monitoring events as input to update the
architecture model at Ops-time. Based on the validation
results, the monitoring is adjusted at Ops-time. In case of
large inaccuracies, the level of detail of the monitoring,
denoted as granularity, can be increased. On the other
hand, the monitoring granularity can be reduced if the
model is accurate enough. As a result, the arising overhead
can be reduced (P4). Sec. VII provides an overview of
the pipeline structure.

The evaluation was carried out based on the case studies
CoCoME [33, 11] and TeaStore [14]. These were selected
because they are established in the field of performance
modeling and have also been used for the evaluation of related
approaches [30, 14]. The results show a high quality of the
derived models and adequate scalability characteristics of
the implemented approach. Furthermore, it was shown that
by controlling the granularity of the monitoring, the arising
overhead could be reduced.

II. FOUNDATIONS

The paper relies on several concepts and approaches, the
most important of them are introduced within this section.

A. Palladio Component Model
The Palladio Component Model (PCM) is a model-based

approach for the analysis of software architectures [31]. The
PCM focuses on the evaluation of performance aspects, such
as the detection of bottlenecks and scalability problems. The
PCM makes it possible to make statements about the impact of
design decisions at an early stage of development. As a result,
high costs for wrong decisions in development can be avoided
and scalable software can be designed.

The PCM divides the specification of the software ar-
chitecture into five different meta-models. The Repository
Model contains a repository with components and interfaces.
In addition, it includes the descriptions of the behavior of
services that are provided by these components. These are
called Service Effect Specifications (SEFFs). The System Model
describes the composition of the software architecture, based
on the components and interfaces specified in the repository.
The Resource Environment Model reflects the actual hardware
environment which is composed of containers with processing
resources (e.g., CPU) and links between them. The mapping
from the system composition (System Model) to the resources
(Resource Environment Model) is described by the Allocation
Model. Finally, the Usage Model defines the behavior of users,
i.e. the way in which they interact with the system.

B. iObserve
iObserve considers the adaptation and evolution of cloud-

based systems as two interwoven processes [9]. The main idea
is to use Ops-time observations to detect changes during the
operation and to reflect them by updating an architecture model
which is then applied for quality predictions. The PCM is used
as the basis for the quality predictions and Kieker is used
for monitoring the system during operation [13, 9]. Briefly
summarized, iObserve collects monitoring data at Ops-time
with the help of Kieker and applies necessary changes to
the architecture model (PCM instance) which originated at
Dev-time.

Adaptation and evolution are interwoven and shared models
are used throughout the application life-cycle to close the
gap between Ops-time and Dev-time. The mapping between
elements in the architecture model and corresponding elements
in the source code is based on the runtime architecture
correspondence model [10, 29].



C. Continuous Integration of Performance Models

CIPM (Continuous Integration of Performance Models) [25,
26] aims to update the architectural model after each source
code commit at Dev-time and after changes at Ops-time. To
accomplish this, CIPM extends the rule-based incremental
extraction of the architecture models from Langhammer [22]
with further functionalities like the incremental calibration.
Furthermore, it integrates parts of iObserve to update the
PMs according to Ops-time changes, i.e., changes in usage or
deployment. The incremental calibration of CIPM estimates
resource demands and recognizes parametric dependencies. The
findings are used to update the Repository Model.

For the calibration, CIPM uses an adaptive monitoring to
collect the required data while the application is running.
Thereby, not only information about service calls is collected
(so called coarse-grained monitoring), but also about the
behavior within the service calls (fine-grained monitoring)
is tracked [26]. It is called adaptive, because just the parts that
have been changed are instrumented fine granular. Besides,
the fine-grained monitoring can be deactivated to reduce
the monitoring overhead. To control which services have
to be observed fine granular, CIPM proposes the so-called
Instrumentation Model, which stores instrumentation points
and their status.

After the calibration of the architecture model, CIPM starts
a self-validation process. It simulates the calibrated model
and compares the simulation results to the monitoring data.
Recognized deviations can then be used to adjust the monitoring
and calibration process in order to eliminate them.

III. RUNNING EXAMPLE

In order to illustrate the concepts of our approach, we will
introduce the TeaStore as a running example [14]. The TeaStore
is a web-based application which, as the name already implies,
implements a shop for all kinds of tea. The application is
based on a distributed microservice architecture and designed
to be suitable for the evaluation of approaches in the field of
performance modeling [14].

The TeaStore consists of six components: Registry, Image
Provider, Auth, Persistence, Recommender and WebUI. All
components register themselves at the registry, which makes
them available for the individual components. This enables
client-side load balancing. Communication between the compo-
nents is based on the widely used representational state transfer
(REST) standard [8]. There are four different Recommender
components (implementations) with identical functionality,
which are used to suggest related products to the users. They
offer two different services, “train” and “recommend”. The
“train” service trains the recommender with orders from the
past, whereas the “recommend” service suggests products to
the users that are related to their current shopping cart.

The TeaStore is a very dynamic application, especially
due to the load balancing, which allows replications and de-
replications without great effort. Therefore, changes of the
system landscape at Ops-time are common. In such cases, it

is inevitable that an associated architecture model must be
constantly adapted in order to remain consistent.

An up-to-date architecture model can be used to answer
various questions regarding performance, scalability and other
quality aspects. Therefore, the goal of our approach is to
provide an accurate architecture model at any point in time and
the required manual effort should be kept as low as possible.

IV. APPROACH OVERVIEW

In this section, we provide a rough overview of the con-
ceptual design of the approach and explain how it enables
consistency between architectural models and source code as
well as how Ops-time events are used to update the models.

The design and implementation is dedicated to the use of the
PCM for describing software architectures. The main reasons
for choosing the PCM included its precise realization of the
principles of component-based software engineering and the
rich set of analysis features [31]. It also enabled the seamless
integration of existing functionalities from CIPM [26, 25] and
iObserve [9, 10].

Fig. 1 shows a summary of the approach including the most
important processes, artefacts and their interactions.

Dev-Time Ops-Time

Source Code

Instrumentation (1)

System Composition
Derivation (2) Validation (3) Monitoring (4)

    Transformation Pipeline (5)

Architecture Model

Fig. 1. Graphical overview of the most important processes and artefacts

Considering source code changes at Dev-time as starting
point, we update the Repository Model and establish a mapping
between entities in the source code and corresponding elements
in the architecture model based on CIPM [25].

In order to obtain information about the running application,
it is necessary to monitor it. Our monitoring is based on the
idea that we weave information from the mapping into the
source code during the instrumentation process [25]. This
allows us to easily link the monitoring data to the elements
in the architecture model. The instrumentation establishes a
fine-grained monitoring for all services to be monitored (1).
This fine-granular monitoring can be changed dynamically by
defining an endpoint that specifies the monitoring granularity.

Using the mapping and the source code as input, our
approach supports the derivation of a System Model at
Dev-time (2). This process does not work fully automated, it is
necessary that a developer manages the resolution of conflicts.
At Ops-time, the same method is used within the transformation
pipeline (5), but the conflicts are resolved without assistance.
Details about the procedure are presented in Sec. V.



At Ops-time, the current architectural model is simulated and
the results of the simulation are compared to the monitoring
data (4). This process is called validation (3) and the resulting
data is used as input for the transformation pipeline (5).
In addition, the validation results are used to adjust the
granularity of the monitoring. This concept is based on the
CIPM approach, which calls this step “self-validation” [26].
Subsequently, the monitoring data (4), together with the results
of the validation (3) are used as input for a transformation
pipeline (5), which updates all parts of the architecture model
accordingly. Consequently, the pipeline is able to adjust its
behavior according to the validation results. Sec. VII discusses
the transformation pipeline in more detail, while Sec. VI
presents the methodology for validating the models.

V. SYSTEM COMPOSITION CONSISTENCY

The procedure is composed of two phases. First, a graph is
created that represents which services of the application lead
to the execution of which other services. To represent this,
a new data structure was introduced, the Service-Call-Graph
(SCG). In the second step, the SCG is used to derive the
model that reflects the system composition. In the following,
we first discuss the structure of the SCG, then the strategies
for extracting a SCG and finally we describe how a SCG can
be used to build and update a System Model.

a) Service-Call-Graph (SCG): A SCG can be displayed
as a directed graph where a service/resource container pair is
a node and an edge indicates that a service on a particular
container leads to the execution of another service on a certain
container. Fig. 2 shows an exemplary SCG. It is a truncated
version of the SCG from the TeaStore case study (cf. Sec.
III). The sample graph shows that the “confirmOrder” service

HTTPServerHost
WebUI.confirmOrder

RegistryHost
Registry.placeOrder

Auth.placeOrder Registry.persistOrder

PersistenceHost
Persistence.persistOrder Persistence.persistItems

host

service

call

Fig. 2. Graphical representation of an exemplary Service-Call-Graph (SCG)

of the WebUI component calls the “placeOrder” service of
the Registry component. The corresponding hosts, on which
the services are executed, are displayed as black boxes. This
information is not mandatory, i.e. an SCG can be created
without specifying the corresponding hosts. This becomes
clearer in the following, when the procedures for building
the SCG are described.

b) SCG Extraction at Dev-time: For the automated
generation of a SCG at Dev-time, three things are needed:
source code, an existing Repository Model and a mapping
between elements of the source code and the elements in the
Repository Model. First, a code analysis is used to build a
call graph that indicates the invocation dependencies between
methods [41]. Using the mapping, these methods can be

assigned to the corresponding services in the Repository Model.
Thus, the method call graph can be transformed into a SCG.

An important characteristic of such analysis is that we have
to make simplifying assumptions. Because of the limited ability
of static source code to approximate the execution semantics, it
is uncertain how decisions are actually made during execution
[21]. This is the reason why we need the support of a developer
to deduce the system composition at Dev-time. We also leave
out information about the hosts in the generated SCG, since
this information is usually not available at Dev-time.

c) SCG Extraction at Ops-time: At Ops-time, monitoring
data serves as primary information source. With the help of
the embedded information about the mapping, trees of service
calls can be built (so-called service call traces). These in turn
reflect which services call each other, which is the information
needed for the construction of a SCG. Through observation, we
obtain in-depth insight about the flow semantics and can record
the actual execution paths, which is an important advantage
compared to a static code analysis. In contrast to the SCG we
are building at Dev-time, we also attach the information about
the host to the nodes in the SCG.

Even service call traces that extend beyond system bound-
aries are recorded by the monitoring. When a call leaves a
system, the necessary information is attached so that the traces
can be merged subsequently in a central backend that receives
the monitoring data [28].

d) System Model Generation from SCG: In the second
stage, the extracted SCG is used to build a System Model. As
mentioned before, in some cases a developer is needed which
resolves conflicts that result from the lack of information at
Dev-time. At Ops-time, this support is not needed, because it
is ensured that conflicts are resolved automatically.

In the process there are several recurring tasks that are
introduced in advance. By assembling these tasks, the whole
process can be explained very compactly and clearly thereafter.
In addition, the tasks are demonstrated by means of the running
example.
• Component Wiring: Components provide various interfaces

(so-called provided roles) and require certain interfaces (so-
called required roles). In order for the component to be
operational, the required roles must be connected to matching
provided roles of other components. In the following, we
refer to the instance of a component whose required roles
need to be satisfied as component instance (CI). In the wiring
step, we first group all components that can be reached in the
SCG via services of the CI and map them to the matching
required roles of the CI. If several components fit to the same
required role, a Component Selection is performed. Once
the appropriate component has been selected, an instance of
this component is provided by the Instance Selection step.
Finally, the required roles of the CI are linked to the provided
roles of the determined component instances.

• Component Selection: This is a conflict that must be re-
solved. At Dev-time, a developer must select the component
to be used. At Ops-time, the component that has actually
been used is reflected in the service call traces.



• Instance Selection: The aim of this step is to provide a
component instance for a given component type. If no
instance of this type exists, it is obvious that a new one
must be created. If one or more instances are present, one of
them must be selected, or a new instance must be created. At
Dev-time the selection must be done manually. At Ops-time
there can be no such conflict, because we can distinguish
the instances based on the service call traces.

In the following, we will walk through the Component Wiring
step based on an instance of the WebUI component (see Fig.
2) and assuming that the procedure takes place at Dev-time.
First, all outgoing edges of services that belong to the WebUI
are examined and their destination component is discovered.
In our example this is only one edge, the one from the service
“WebUI.confirmOrder” to “Registry.placeOrder”, meaning that
the WebUI component has a required role which is fulfilled
by a provided role of the Registry component. A Component
Selection is not necessary here, as it is clear that the Registry
component is used. If there would be a second component
which offers the same interface as the Registry component, then
a selection might be mandatory. For the instance selection, it
matters whether an instance of the Registry component already
exists. If this is not the case, we create one and otherwise the
developer must determine which one to use (or whether a new
one should be created). Finally, the WebUI component instance
is attached to the Registry component instance and thus, the
corresponding required role is fulfilled.

Based on the partial steps, the process can now be described
with three activities:

1) A developer has to specify the interfaces that should be
provided by the system. At Ops-time, we assume that
these interfaces are already specified and do not change
during execution. For each of these interfaces, the suitable
components are collected and then a Component Selection
with a subsequent Instance Selection are executed. The
result is a list of component instances (Instance List) that
provide and expose the interfaces which are offered by
the system.

2) If the Instance List is empty, the procedure is finished.
Otherwise the Component Wiring procedure is executed
for each component instance in the list.

3) If new component instances were created during step two,
all of them are added to the Instance List and the second
step is executed again.

VI. VALIDATION FEEDBACK LOOP

An important innovation of our approach is the so-called
Validation Feedback Loop (VFL). The idea is to continuously
evaluate the accuracy of the performance predictions related
to the derived models.

In order to determine the prediction accuracy of a model, it
is necessary to have a baseline. We use measurements from
the real system as reference, which are available in the form of
monitoring data. By comparing simulation data of the models
with the monitoring data, it can be assessed how well the

models represent the actually observed system in its current
state. In case of high deviations, it is possible to intervene.

Fig. 3 presents the design of the VFL and visualizes the
interaction with the transformation pipeline.

Monitoring
Data

PCM Model

Validation

PCM Simulation

Simulation ResultsValidation Results

  Transformation
Pipeline

Fig. 3. Illustration of how the Validation Feedback Loop (VFL) works in
combination with the transformation pipeline

The simulation results are grouped into so-called measuring
points, i.e., the points at which measurements were taken. For
example, a typical measuring point is the response time of
a service. To be able to compare the simulation results with
the monitoring data, we have to map the monitoring data to
the corresponding measuring points in an upfront step. This
assignment is based on the mapping between the Repository
Model and the source code.

After the monitoring data has been mapped to the measuring
points of the simulation results, we have two distributions
for each measuring point. These are compared and different
metrics are calculated to determine how close the simulation
results are to the actual measured values. The reasons that
were considered when selecting the metrics are outlined and
summarized in Sec. VIII-B2. We have used the following ones
to compare the two distributions: Wasserstein distance [34],
Kolmogorov–Smirnov test (KS test) [16] and the difference of
conventional statistical measures (e.g., average and quartiles).

All transformations within the transformation pipeline can
access these metrics and use them to improve the resulting
model. In addition, the metrics are used to adjust the granularity
of the monitoring at Ops-time. With this extension, the
monitoring for certain services can be deactivated if predefined
criteria are met. As a result, it is possible to balance the trade-
off between effort and granularity of the monitoring.

VII. TRANSFORMATION PIPELINE

The core at Ops-time is a transformation pipeline that
processes the monitoring data with the goal of updating a
PCM instance (similar to iObserve [9]). In order to realize
the transformation pipeline we used a tee and join pipeline
architecture [6], based on parts of iObserve [9] and the
CIPM approach [25]. Fig. 4 shows the structure of the entire
transformation pipeline. The following paragraphs explain the
transformations in more detail.

a) TPreprocess: In a pre-processing step, the monitoring
data is filtered and converted into suitable data structures. One
example is the construction of service call traces, which can
be used to analyze the structure of the system composition.
Furthermore, the monitoring data is divided into two sets.



Control flow Data flow Composite transformation

TPreprocess

TResourceEnvironment

PCM instance

TSystemComposition

TCalibration

TFinalize

Monitoring Data

Validation Results

Fig. 4. Overview of all higher-level transformations within the pipeline

One set is used as input for the following transformations
(training set) and the second set is used for the validations
of the architecture model (validation set). The reason for this
split is that the validation is much more meaningful when it is
carried out on data that the transformations have never seen.

b) TResourceEnvironment: The Ops-time information
(monitoring) is written to the so-called Runtime Environment
Model (REM). The REM contains details about the hosts and
the connections between them. We defined rules and actions
based on the consistency preservation platform Vitruvius [15]
to keep our REM consistent with the resource environment in
the corresponding PCM. The advantages and the idea behind
the REM are twofold: it ensures the separation of concerns
principle (Dev-time vs. Ops-time concerns) and it allows to
establish a mapping between the Ops-time environment and
the elements in the architecture model via the correspondence
mechanism of Vitruvius.

c) TSystemComposition: Next, the system composition
and the associated deployment are examined. First, a SCG
is built and the system composition is updated with the
methodology that was introduced in Sec. V. Afterwards, the
SCG is used to recognize deployments and undeployment
events. This is possible because the SCG also contains
information about the hosts.

d) TCalibration: The stochastic expressions in the Repos-
itory Model are calibrated and the user behavior is analyzed.
The calibration of stochastic expressions within the Repository
Model is largely based on the CIPM approach [25]. These
were extended by an adaptive dimension, which dynamically
varies the parameters of the regressions based on the validation
data. The analysis of the user behavior and the corresponding
extraction of user scenarios are based on iObserve [10, 9].
It uses clustering techniques to form user groups and derive
usage scenarios which are integrated into the Usage Model.

e) TFinalize: In the final step (Finalize), the derived
architectural model is validated using the procedure introduced
in Sec. VI. The validation results are investigated and depending
on them, the granularity of the monitoring is adjusted. Based on
configurable criteria, the fine-granular monitoring is activated
or deactivated. This can be illustrated by means of the
“confirmOrder” service of the running example: the measured
response times are compared with those obtained by simulating
the architecture model. If the deviation matches defined criteria

(e.g., distance of the means is less than 5ms), the fine-grained
monitoring for the service is deactivated.

Afterwards, the validation results are entered as input into
the next execution of the pipeline.

VIII. EVALUATION

This section presents the evaluation design and results.

A. Evaluation Goals

The evaluation focuses on three important characteristics of
our approach. First, this concerns the accuracy of the derived
models and the associated performance predictions, which
are essential so that they can be used for the assessment of
architectural design decisions (Goal 1). Second, the monitoring
overhead was measured and investigated in detail. It is
important that the overhead does not distort the performance
characteristics of the application under consideration, otherwise
our approach would not be applicable in practice (Goal
2). Third, the scalability of the transformation pipeline was
analyzed. This is an important quality property, since it is
required to react quickly to events at Ops-time in order to keep
the models up-to-date (Goal 3). The analysis of these goals
was divided into the following research questions (RQs):
• Goal 1: Accuracy of the derived models:

– RQ-1.1: How accurate is the extraction of the System
Models at Dev-time?

– RQ-1.2: Are the Resource Environment Model, the Allo-
cation Model and the System Model adjusted correctly at
Ops-time when applying software adaption scenarios?

– RQ-1.3: How accurate are the performance predictions
of the derived models, when comparing them to the data
which results from monitoring the application?

• Goal 2: Monitoring overhead:
– RQ-2.1: How significant is the overhead that is caused

by the monitoring?
– RQ-2.2: To what extent does the dynamic adaption of

the monitoring granularity help to reduce the monitoring
overhead?

• Goal 3: Scalability of the transformation pipeline:
– RQ-3.1: How do the transformations within the pipeline

scale with increasing numbers of monitoring records as
input?

The first two research questions, RQ-1.1 and RQ-1.2, ad-
dress the important extensions of this approach regarding
the scope of consistency maintenance (contribution i) and
aim to demonstrate that they are working as intended. RQ-
1.3 is then used to assess the overall quality of the derived
architectural models, since all parts of the architectural model
must be adequately adjusted for accurate simulation results.
Consequently, this question is used to ensure that our extensions
work as expected in conjunction with adopted functionalities
from existing approaches.

RQ-2.1 addresses the overhead caused by the monitoring
and aims to analyze the impact of the overhead on the
observed application. Based on RQ-2.2, we will investigate



whether the combination of the transformation pipeline and the
validation process successfully reduce the monitoring overhead
by continuously adjusting the granularity of the monitoring
(contributions ii and iii).

RQ-3.1 focuses on ensuring the scalability of the transfor-
mations within the pipeline to ensure general applicability. If
all transformations possess adequate scalability properties, it
can be assumed that the pipeline delivers suitable response
times in relevant application scenarios.

B. Evaluation Metrics

The metrics used in the evaluation can be divided into the
following two categories.

1) Model Conformity: For our evaluation, we need to be
able to compare several model types. The applied metric is
based on the Jaccard similarity coefficient (JC) [7]. The JC
is well suited because the calculation is straightforward, its
significance is high, and it is easy to interpret. The JC is defined
as follows:

JC(A,B) =
|A ∩B|
|A ∪B|

In this context, A and B are sets. Normally, the JC is used to
quantify the equality of sets. However, we can also apply this
concept to models by considering the model as a set of model
elements. If the resulting JC is equal to 1, the two models
under investigation are considered to be fully identical.

2) Distribution Comparison: To compare distributions we
use three types of metrics: conventional statistical measures
[40], non parametric tests (KS test) [36] and distance functions
(Wasserstein) [27]. These metrics can be used to compare the
distributions of the monitored response times (reality) with the
simulated response times of the models (prediction).

As non-parametric test we used the Kolmogorov–Smirnov
test (KS test) [16]. It calculates the maximum distance between
the Cumulative Distribution Functions (CDFs). The minimum is
0 (if both distributions are perfectly identical) and the closer it is
to 1, the more different are the distributions under observation.
Normally, this non-parametric test is used to check whether
two random variables originate from the same underlying
distribution. Therefore, this metric is not ideal for our use
case. In particular, higher values are not meaningful because
shifts of distributions are not considered. This fact was taken
into account in the evaluation and is a reason why we use the
KS test in combination with other metrics.

The Wasserstein metric is a distance measure for distributions
[27]. In simple terms, it describes how much a distribution
must be changed in order to be transformed into the other one.
An advantage of this metric is that, unlike the KS test, it is not
sensitive to shifts of the distributions. A drawback, however,
is that the result is an absolute number that cannot be easily
interpreted without having a baseline.

The classic statistics metrics (e.g. mean or quartiles) are
calculated for both distributions and the distance is calculated.
Using these commonly known metrics, it is possible to get an
overview of the two distributions and their dissimilarities in a
simple and quick way.

C. Experiment Setup

Within the evaluation, we followed a case study based
approach and used CoCoME [33] and TeaStore [14]. Both
are widely used in the field of performance modeling and
represent a relevant business use case [30, 14]. First, we used
CoCoME to get preliminary results and afterwards the TeaStore
was investigated to provide detailed conclusions1 [28]. In this
paper, we focus on the results in the context of the TeaStore.

The evaluation procedure is based on the research questions
and can be divided into the following three experiments:

a) Experiment 1 (E1): Extraction of a System Model
at Dev-time using the procedure presented in Sec. V. As
input, the source code of the case studies is used. Finally,
the resulting model is compared to a reference model that
represents the actual system composition. Based on the results
of this experiment, RQ-1.1 can be answered.

b) Experiment 2 (E2): The foundation of this experiment
is a number of predefined change scenarios, such as replications,
allocations, workload changes and system composition changes.
The Scenario Generator selects a number of change scenarios
and for each of the selected scenarios, a reference model is
generated. Since the Scenario Generator knows the executed
change, it also knows how the reference model must look
like. Besides the list of changes, another output is the Change
Orchestration component, which applies the selected changes
at Ops-time. The modified system is observed and the arising
monitoring data is used as input for the transformation pipeline.
Finally, the resulting models are compared to the reference
models and deviations are detected by applying the Jaccard
coefficient (JC). We concentrated on the System Model, the
Resource Environment Model and the Allocation Model (RQ-
1.2). The Usage Model was excluded from the scope of this
paper, as it has already been extensively addressed in the
context of the iObserve approach [10, 9].

Furthermore, the monitoring data is compared to simulation
results of the derived models to estimate how well the models
represent the performance characteristics of the actual system.
Here, we used the metrics that were introduced in Sec. VIII-B2
to answer RQ-1.3. In order to quantify the accuracy of the
performance predictions, the following procedure is used:
1) Execution of the experiment, storage of the derived models

and the associated monitoring data.
2) Examination of the models at different points in time based

on simulations.
3) Comparison of the simulation results with the monitoring

data in two different ways:
(a) Comparison with monitoring data collected after the
construction of the model under consideration (forward
prediction). This allows us to make statements about how
well the derived model can be used to predict future
scenarios.
(b) Comparison with monitoring data that was collected
chronologically before the construction of the model under
consideration (backward prediction). In this way, it can

1https://github.com/CIPM-tools/CIPM-Pipeline

https://github.com/CIPM-tools/CIPM-Pipeline


be determined how well the model is able to reproduce
previously observed situations.

It must be taken into account that in future/previous points in
time other system compositions, runtime environments or user
behavior are present (due to the simulated changes). Therefore,
the considered model must be adapted in such a way that it
correctly reflects the system at the respective point in time.

The experiment was executed 10 times, each time with
different changes. Every 5 minutes the next change is executed.
In total, the experiment is carried out for 180 minutes. To
ensure that the forward prediction and the backward prediction
are meaningful, we only consider the time period between the
30 and the 150 minute mark.

Within this experiment, we only consider the TeaStore case
study and focused on the service “confirmOrder”. To increase
the complexity of the service, it was slightly modified. After
the order has been processed within the “confirmOrder” service,
the Recommender component is re-trained in our experiment.
As a result, the response time of the “confirmOrder” service
increases with a growing number of orders in the database,
since the execution time of the Recommender depends on the
number of orders and the applied recommending strategy. Thus,
we want to make sure, that our approach recognizes parametric
dependencies and the system composition.

Another dimension that is considered while performing E2
is the measurement of the emerging monitoring overhead and
the amount of generated monitoring data. This information can
then be used to answer RQ-2.1 and RQ-2.2.

c) Experiment 3 (E3): In this experiment, synthetic
monitoring data is generated and used as input for the individual
transformations within the transformation pipeline. First, we
identify the parameters that influence the execution times and
subsequently we generate the monitoring data in such a way,
that it produces worst-case execution times. By means of this
experiment, scalability questions can be answered (RQ-3.1).

D. Model Accuracy

First, the accuracy of the System Model extraction at
Dev-time was investigated based on experiment E1. The key
findings of the experiment for the selected case studies are
shown in Table I.

TABLE I
RESULTS FOR DERIVING THE SYSTEM MODEL AT DEV-TIME

Casestudy JC Model Elements Conflicts
CoCoME 1.0 16 2
TeaStore 1.0 18 5

It can be seen that in both cases an identical model to the
reference model was built, as the JC equals to one. Furthermore,
the table shows the number of elements in the final model
and the number of conflicts that had to be resolved manually
during the process. According to these results, RQ-1.1 can be
answered as it became clear that the system compositions were
reflected correctly in the extracted System Models.

In experiment E2, the accuracy of three model types at
Ops-time was investigated simultaneously: System Model,
Resource Environment Model and Allocation Model.

TABLE II
MODEL ACCURACY WHEN SIMULATING ADAPTION SCENARIOS

Change Type Minimum Jaccard Index
System Allocation Resource Environment

(De-)/Allocation 1.0 1.0 1.0
(De-)/Replication 1.0 1.0 1.0

Migration 1.0 1.0 1.0
System Composition 1.0 1.0 1.0

Workload 1.0 1.0 1.0

The obtained results (see Table II) show that all three
model types are correctly inferred in all cases. Consequently,
it can be concluded for RQ-1.2 that the change scenarios were
recognized and correctly reflected to the models.

In the next step, the models were systematically simulated
and compared to monitoring data as explained in Sec. VIII-C.

Figure 5 shows the median of the Wasserstein distance over
time for the forward and backward prediction, regarding the
response times of the “confirmOrder” service. In addition, Table
III summarizes the Wasserstein distance, the KS test and the
distance of the mean value over time.
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Fig. 5. Median Wasserstein distance of the forward and backward prediction
for a model derived at a given point in time - regarding the response times of
TeaStores confirmOrder service

The Wasserstein distance of the forward prediction is still
very high at the beginning. The main reason for this is that the
amount of data is not yet sufficient to estimate the behavior in
general. After a short time, however, it decreases significantly
and gets closer to the values of the backward prediction.
Thereafter, the value settles at a level close to the backward
prediction. Consequently, the derived models are very well
suited to make predictions about the performance characteristics
of the application.

Furthermore, this implies that the parametric dependency of
the response time on the number of orders in the database was
detected. The observations can be confirmed using additional
metrics (see Table III).



TABLE III
AGGREGATED METRICS OF THE FORWARD PREDICTION AND BACKWARD

PREDICTION OVER TIME

Metric Q1 Q2 Q3 Mean Std Dev
Forward Prediction

Wasserstein 44.732 47.179 52.718 70.991 68.524
KS test 0.125 0.143 0.168 0.199 0.131

Mean distance 13.198 25.965 41.924 61.573 91.482
Backward Prediction

Wasserstein 32.622 35.011 41.246 37.268 7.618
KS test 0.098 0.112 0.121 0.114 0.031

Mean distance 15.560 26.981 34.373 23.329 9.053

The interpretation of the mean distance depends on the
average response time of the “confirmOrder” service, which
amounted to approximately 1000ms in the experiment. In
addition, it is important to note that the average and standard
deviation of the forward prediction metrics are strongly affected
by the high values at the beginning of the experiment. With
the help of these findings, RQ-1.3 can be answered: all metrics
show that the derived models represent the already observed
behavior very well and on the other hand can also be used
to predict the performance for scenarios that have not been
observed so far.

E. Monitoring Overhead

In the first step, we measured the total monitoring overhead
resulting from a single call to the “confirmOrder” service. We
distinguish between the overhead caused by the fine-grained
monitoring and the coarse-grained monitoring. The following
listing shows the respective overheads in milliseconds and the
corresponding standard deviations:

• Fine-grained: 1.755ms (σ = 0.389ms)
• Coarse-grained: 0.731ms (σ = 0.144ms)

Using these values, we can answer RQ-2.1. Considering the
average response time of about 1000ms of the “confirmOrder”
service within E2, the determined overhead is negligible and
does not significantly influence the response time of the service.

In the second step, the overall monitoring overhead was
analyzed and observed over time. Every 5 minutes, the sum of
the monitoring overhead from the last 5 minutes was calculated.
When considering the entire overhead, it is important to note
that there are parts of the monitoring that are independent of
the granularity of the monitoring, such as observing resource
utilizations. Fig. 6 shows the results which were obtained by
forming the median from multiple experiment executions.

The dashed line in the graph highlights point in time when
the first switch from fine-granular monitoring to coarse-granular
monitoring happened. Based on this graph, an answer to RQ-
2.2 can be given. After the validation process begins to find
individual services that are well represented in the model, the
granularity of monitoring is reduced. This happens after about
20 minutes. At the peak, a monitoring overhead of approx.
1.362s arises and then decreases to an average of 0.822s as
the experiment progresses. This corresponds to a reduction
of 39.65%. Together with the evaluation results about the
model and the prediction accuracy, it can be concluded that the
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Fig. 6. Median of the arising monitoring overhead over time when considering
five minute intervals

validation process successfully identified services that are well
represented in the model and then reduced the granularity of the
monitoring accordingly. Ultimately, this leads to a significant
reduction of the monitoring overhead.

F. Transformation Pipeline Scalability

Using experiment E3 we examined the scalability of each
transformation within the pipeline. In this paper, we will only
summarize the results briefly. First, for all transformations that
were taken over from iObserve (e.g., user behavior update), it
was shown that the results of the scalability analysis are in line
with the findings from the work in the context of iObserve [10].
For the newly introduced and implemented transformations
(TPreprocess, TResourceEnvironment, TSystemComposition and
TFinalize), a linear relationship between the number of moni-
toring records as input and the execution time of the respective
transformation was found in all considered cases [28]. Thus, it
can be concluded for RQ-3.1 that the overall scalability of the
pipeline is adequate and does not lead to unexpectedly high
execution times.

G. Threats to Validity

The identification of the threats to validity is based on guide-
lines for case study research [32]. Therefore, we distinguish
between four dimensions of validity: internal validity, external
validity, construct validity and conclusion validity.

Internal Validity: A threat to validity is the selection of
metrics within the evaluation. For comparing distributions we
used the Wasserstein distance, the KS-test and conventional
statistical measures. These have been used in related studies
[12, 25, 43] and by combining them we minimize the risk that
a single metric distorts the evaluation results. The same applies
for the JC, which has also been used in related work [10].
Another threat concerns the execution of experiment E1 (see
Sec. VIII-C). The conflicts that occurred during the execution
of the experiment were resolved manually, so the outcome
depends on the person who performs the experiment. If this
person does not know the system composition well enough and
makes incorrect decision, the calculated JC would be lower.



External Validity: Another threat to validity is the selection
of case studies. It may be possible that the results obtained
from the case studies are not representative. To avoid this,
we selected CoCoME and TeaStore, which both are widely
used in research and address common business use cases [30,
14]. By combining the two selected case studies, the risk of
non-representative results is further reduced.

Construct Validity: In the evaluation we rely on a combina-
tion of synthetically generated monitoring data and monitoring
data generated directly by executing a case study. For the
synthetically generated data, external factors such as the
Ops-time environment or the type of load testing can be
excluded. When observing the case study, however, the quality
of the monitoring events must be ensured. Therefore, we
decided to use the Kieker framework with extensions that
have already been implemented in previous projects [13, 25].

Conclusion Validity: The subjectivity of a researcher must
be avoided when interpreting the evaluation results. Many
different, well known metrics have been used which are easy
to interpret. All conclusions and arguments are well structured
and based on metrics, making them easy to understand.

IX. RELATED WORK

In the following, we will pick up the structure from the
introduction and divide the related approaches into three groups
according to the scope of their consistency management.

The first group consists of the approaches that focus on
consistency at Dev-time. For example, Just-In-Time Tool for
Architecture Consistency (JITTAC) [5] detects inconsistencies
between architecture models and source code, but the elim-
ination is not automated. The mbeddr approach [42] uses a
single underlying model for implementing, testing and verifying
system artefacts like component-based architecture. The goal
is to avoid inconsistencies between artifacts, so that no explicit
consistency maintenance processes are needed. Additionally,
several reverse engineering tools exist (e.g., [1, 23]), which
extract the architectural model from source code at Dev-time. In
comparison to our approach, the related works of this category
strictly target the maintenance of consistency at Dev-time.

The second category includes approaches that deal with the
extraction and consistency preservation of architectural models
based on observed Ops-time events. The approaches [3, 24,
44, 38] extract component-based architectural models from
monitoring data. Furthermore, [24] also detects changes such
as migrations and reflects them in the model. In addition, there
are several other approaches for extracting and updating models
at Ops-time, which are summarized in [39]. Drawbacks of these
approaches include the continuously high monitoring effort
required to extract or update models and that no information
is collected about the accuracy of the models (no validation).

The third category covers approaches whose scope spans
Dev-time and Ops-time. For example, Konersmann proposed
the integration of information about the architecture model
directly into the code via annotations [18, 17]. This enables the
dynamic generation of an architecture model from the source
code via transformations [18]. He also extended his work

to synchronize allocation models with running software [19].
The approach of Krogmann [20] uses both source code and
monitoring events to extract an architectural model. However,
it applies a very fine-grained monitoring which causes a high
monitoring overhead and makes it unsuitable for the use in
production. Compared to our approach, both presented works
show a much smaller scope of consistency preservation (e.g.,
limited recognition of adaption scenarios). Furthermore, they
do not automatically analyze the quality of the models.

X. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach for maintaining
the consistency between software artifacts, with a special
focus on supporting evolution and adaptation scenarios. It
provides up-to-date architecture models both at Dev-time and
at Ops-time, along with a high degree of automation. We
introduced a strategy that supports the consistency preservation
of the system composition between the architectural model and
the realization of the considered application. In addition, the
Validation Feedback Loop was presented, which continuously
analyzes the prediction accuracy of the models and passes
the results to the transformation pipeline, which updates the
architectural model at Ops-time. Based on the Validation
Feedback Loop, the extent of the monitoring is dynamically
refined to minimize the resulting overhead. These innovations
close gaps of existing approaches, especially regarding the
scope of consistency maintenance and the automated analysis
of the model quality.

The evaluation is based on the case studies CoCoME [33]
and TeaStore [14]. The accuracy of the derived models and
the applicability of the consistency maintenance process were
demonstrated. Besides, we measured the emerging monitor-
ing overhead and revealed, that by continuously adjusting
the monitoring based on the validation results, the arising
overhead can be reduced. Finally, we analyzed the scalability
characteristics of the transformation pipeline and discovered
that all transformations within the pipeline scale adequately.

It turned out that there is still potential for extensions and
improvements in some areas. Especially the validations that
were integrated within the pipeline open up many opportunities
for enhancements. Future work will focus on using the valida-
tion results to improve the accuracy of the updated model and
associated performance predictions by incremental optimization
of the parametric dependencies using genetic algorithms [43].
In addition, it is planned to consider additional scenarios for
the evaluation to demonstrate the general applicability. Finally,
for broad practical applicability, the consistency rules used
for updating the architecture models at Dev-time have to be
extended to update the models for systems using different
architecture-inducing technologies [35].
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