Semantische Suche

Zur Navigation springen Zur Suche springen

Mittwoch, 21. September 2022, 11:30 Uhr

Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Martin Wittlinger
Titel Identification and refactoring of bad smells in model-based analyses
Vortragstyp Masterarbeit
Betreuer(in) Sandro Koch
Vortragsmodus in Präsenz
Kurzfassung In der modernen Softwareentwicklung sind modellbasierte Analysen weit verbreitet. Software-Metriken wie die Vorhersage der Cache-Nutzung haben heute ein breites Anwendungsspektrum. Diese Analysen bedürfen ebenso wie traditionelle objektorientierte Programme der Pflege. Bad Smells und ihre Auswirkungen in objektorientiertem Quellcode sind gründlich erforscht worden. Dies fehlt bei der modellbasierten Analyse. Wir haben uns mit objektorientierten Bad Smells beschäftigt und nach ähnlichen Problemen in der modellbasierten Analyse gesucht. Schlechte Gerüche in der Analyse sind ein Faktor, der zur Qualität der Analysesoftware beiträgt. Eine geringere Qualität erschwert den Entwicklungsprozess der Analyse. Wir haben zehn neue Bad Smells entdeckt. Wir haben Algorithmen zur Identifizierung und zum Refaktorisieren für sie entwickelt. Wir stellen Implementierungen der Identifizierungsalgorithmen zur Verfügung und bewerten sie an- hand realer Software. Wir haben versucht, Bad Smells in bestehender Analysesoftware wie Camunda zu erkennen. Wir haben diese Bad Smells in den vorhandenen Analysen gefunden.

Freitag, 14. Oktober 2022, 10:30 Uhr

Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Thomas Frank
Titel Benchmarking Tabular Data Synthesis Pipelines for Mixed Data
Vortragstyp Bachelorarbeit
Betreuer(in) Federico Matteucci
Vortragsmodus in Präsenz
Kurzfassung In machine learning, simpler, interpretable models require significantly more training data than complex, opaque models to achieve reliable results. This is a problem when gathering data is a challenging, expensive or time-consuming task. Data synthesis is a useful approach for mitigating these problems.

An essential aspect of tabular data is its heterogeneous structure, as it often comes in ``mixed data´´, i.e., it contains both categorical and numerical attributes. Most machine learning methods require the data to be purely numerical. The usual way to deal with this is a categorical encoding.

In this thesis, we evaluate a proposed tabular data synthesis pipeline consisting of a categorical encoding, followed by data synthesis and an optional relabeling of the synthetic data by a complex model. This synthetic data is then used to train a simple model. The performance of the simple model is used to quantify the quality of the generated data. We surveyed the current state of research in categorical encoding and tabular data synthesis and performed an extensive benchmark on a motivated selection of encoders and generators.

Freitag, 14. Oktober 2022, 11:30 Uhr

Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Pascal Krieg
Titel Preventing Code Insertion Attacks on Token-Based Software Plagiarism Detectors
Vortragstyp Bachelorarbeit
Betreuer(in) Timur Sağlam
Vortragsmodus in Präsenz
Kurzfassung Some students tasked with mandatory programming assignments lack the time or dedication to solve the assignment themselves. Instead, they plagiarize a peer’s solution by slightly modifying the code. However, there exist numerous tools that assist in detecting these kinds of plagiarism. These tools can be used by instructors to identify plagiarized programs. The most used type of plagiarism detection tools is token-based plagiarism detectors. They are resilient against many types of obfuscation attacks, such as renaming variables or whitespace modifications. However, they are susceptible to inserting lines of code that do not affect the program flow or result.

The current working assumption was that the successful obfuscation of plagiarism takes more effort and skill than solving the assignment itself. This assumption was broken by automated plagiarism generators, which exploit this weakness. This work aims to develop mechanisms against code insertions that can be directly integrated into existing token-based plagiarism detectors. For this, we first develop mechanisms to negate the negative effect of many types of code insertion. Then we implement these mechanisms prototypically into a state-of-the-art plagiarism detector. We evaluate our implementation by running it on a dataset consisting of real student submissions and automatically generated plagiarism. We show that with our mechanisms, the similarity rating of automatically generated plagiarism increases drastically. Consequently, the plagiarism generator we use fails to create usable plagiarisms.

Freitag, 21. Oktober 2022, 11:30 Uhr

Ort: MS Teams
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Philipp Klaus
Titel Entity Linking für Softwarearchitekturdokumentation
Vortragstyp Bachelorarbeit
Betreuer(in) Jan Keim
Vortragsmodus in Präsenz
Kurzfassung Softwarearchitekturdokumentationen enthalten Fachbegriffe aus der Domäne der Softwareentwicklung. Wenn man diese Begriffe findet und zu den passenden Begriffen in einer Datenbank verknüpft, können Menschen und Textverarbeitungssysteme diese Informationen verwenden, um die Dokumentation besser zu verstehen. Die Fachbegriffe in Dokumentationen entsprechen dabei Entitätserwähnungen im Text.

In dieser Ausarbeitung stellen wir unser domänenspezifisches Entity-Linking-System vor. Das System verknüpft Entitätserwähnungen innerhalb von Softwarearchitekturdokumentationen zu den zugehörigen Entitäten innerhalb einer Wissensbasis. Das System enthält eine domänenspezifische Wissensbasis, ein Modul zur Vorverarbeitung und ein Entity-Linking-System.

Vortragende(r) Raoul Teichmann
Titel Entwicklung einer Entwurfszeit-DSL zur Formalisierung von Runtime Adaptationsstrategien für SAS zum Zweck der Strategie-Optimierung
Vortragstyp Bachelorarbeit
Betreuer(in) Martina Rapp
Vortragsmodus online
Kurzfassung Softwaresysteme der heutigen Zeit werden zunehmend komplexer und unterliegen immer

mehr variierenden Bedingungen. Dadurch gewinnen selbst-adaptive Systeme an Bedeutung, da diese sich neuen Bedingungen dynamisch anpassen können, indem sie Veränderungen an sich selbst vornehmen. Domänenspezifische Modellierungssprachen (DSL) zur Formalisierung von Adaptionsstrategien stellen ein wichtiges Mittel dar, um den Entwurf von Rückkopplungsschleifen selbst-adaptiver Softwaresysteme zu modellieren und zu optimieren. Hiermit soll eine Bachelorarbeit vorgeschlagen werden, die sich mit der Fragestellung befasst, wie eine Optimierung von Adaptionsstrategien in einer DSL zur Entwurfszeit beschrieben werden kann.

Donnerstag, 10. November 2022, 10:00 Uhr

Ort: Raum 333 (Gebäude 50.34)
Webkonferenz: {{{Webkonferenzraum}}}

Vortragende(r) Denis Priss
Titel A Mobility Case Study Framework for Validating Uncertainty Impact Analyses regarding Confidentiality
Vortragstyp Bachelorarbeit
Betreuer(in) Sebastian Hahner
Vortragsmodus in Präsenz
Kurzfassung Vertraulichkeit ist eine wichtige Sicherheitsanforderung an Informationssysteme. Bereits im frühen Entwurf existieren Ungewissheiten, sowohl über das System als auch dessen Umgebung, die sich auf die Vertraulichkeit auswirken können. Es existieren Ansätze, die Softwarearchitektinnen und Softwarearchitekten bei der Untersuchung von Ungewissheiten und deren Auswirkung auf die Vertraulichkeit unterstützen und somit den Aufwand reduzieren. Diese Ansätze wurden jedoch noch nicht umfangreich evaluiert. Bei der Evaluierung ist ein einheitliches Vorgehen wichtig, um konsistente Ergebnisse zu erhalten. Obwohl es allgemein Arbeiten in diesem Bereich gibt, sind diese nicht spezifisch genug, um die Anforderung zu erfüllen.

In dieser Ausarbeitung stellen wir ein Rahmenwerk vor, das diese Lücke schließen soll. Dieses Rahmenwerk besteht aus einem Untersuchungsprozess und einem Fallstudienprotokoll, diese sollen Forschenden helfen, weitere Fallstudien zur Validierung der Ungewissheits-Auswirkungs-Analysen strukturiert durchzuführen und damit auch Ungewissheiten und deren Auswirkung auf Vertraulichkeit zu erforschen. Wir evaluieren unseren Ansatz, indem wir eine Mobilitätsfallstudie durchführen.

Vortragende(r) Yakup Evli
Titel A Mobility Case Study for Attack Propagation Analyses
Vortragstyp Bachelorarbeit
Betreuer(in) Maximilian Walter
Vortragsmodus online
Kurzfassung An existing architectural attack propagation analysis considers vulnerability analysis in software architecture. The analysis is using access control policies together with the vulnerabilities and their combinations to propagate through the system. This phenomenon has to be investigated thoroughly in a real-life context to be able to make conclusions about metrics, e.g. accuracy. However, a concrete approach to achieve the investigation of Attack Propagation Analyses in a real-life context is missing. This work aims to close this gap with “A Mobility Case Study for Validating Attack Propagation Analyses”. In order to achieve validity, conventional properties of case studies in software engineering were identified. Afterward, the end result, in form of a software model, was reviewed according to these properties. This review has revealed that all properties were fulfilled, however not in the highest degree of fulfillment. A discussion about this is held in this thesis.
Vortragende(r) Tizian Bitschi
Titel Uncertainty-aware Confidentiality Analysis Using Architectural Variations
Vortragstyp Bachelorarbeit
Betreuer(in) Sebastian Hahner
Vortragsmodus in Präsenz
Kurzfassung Wenn man Softwaresysteme auf Verletzungen der Vertraulichkeit untersuchen will, führen Ungewissheiten zu falschen Aussagen über die Architektur. Vertraulichkeitsaussagen können zur Entwurfszeit kaum getroffen werden, ohne diese Ungewissheiten zu behandeln. Wir entwickeln einen Kombinationsalgorithmus, der Informationen über die Ungewissheiten bei der Analyse der Architekturszenarien berücksichtigt und daraus eine Aussage über die Vertraulichkeit des Systems treffen kann.

Wir evaluieren, ob es möglich ist, ein System mit zusätzlichen Informationen nicht-binär zu bewerten, wie genau der Kombinationsalgorithmus ist und ob die zusätzlichen Informationen so minimal bleiben, dass ein Softwarearchitekt den Kombinationsalgorithmus überhaupt verwenden kann.