Institutsseminar/2022-01-21 Zusatztermin

Aus IPD-Institutsseminar
Version vom 14. Januar 2022, 09:46 Uhr von Edouard Fouché (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{Termin |datum=2022-01-21T11:30:00.000Z |raum=https://kit-lecture.zoom.us/j/67744231815 }}“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen
Termin (Alle Termine)
Datum Fr 21. Januar 2022, 11:30 Uhr
Dauer 20 min
Ort https://kit-lecture.zoom.us/j/67744231815
Webkonferenz
Vorheriger Termin Fr 14. Januar 2022
Nächster Termin Fr 21. Januar 2022

Vorträge

Vortragende(r) Tobias Hombücher
Titel Canonical Monte Carlo Dependency Estimation
Vortragstyp Proposal
Betreuer(in) Edouard Fouché
Vortragsmodus
Kurzfassung Dependency estimation is a crucial task in data analysis and finds applications in, e.g., data understanding, feature selection and clustering. This thesis focuses on Canonical Dependency Analysis, i.e., the task of estimating the dependency between two random vectors, each consisting of an arbitrary amount of random variables. This task is particularly difficult when (1) the dimensionality of those vectors is high, and (2) the dependency is non-linear. We propose Canonical Monte Carlo Dependency Estimation (cMCDE), an extension of Monte Carlo Dependency Estimation (MCDE, Fouché 2019) to solve this task. Using Monte Carlo simulations, cMCDE estimates dependency based on the average discrepancy between empirical conditional distributions. We show that cMCDE inherits the useful properties of MCDE and compare it to existing competitors. We also propose and apply a method to leverage cMCDE for selecting features from very high-dimensional features spaces, demonstrating cMCDE’s practical relevance.
Neuen Vortrag erstellen

Hinweise