Aus IPD-Institutsseminar
Version vom 19. Juni 2018, 12:19 Uhr von Erik Burger (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen
Termin (Alle Termine)
Datum Fr 18. Januar 2019, 11:30 Uhr
Dauer 65 min
Ort Raum 348 (Gebäude 50.34)
Vorheriger Termin Fr 11. Januar 2019
Nächster Termin Fr 25. Januar 2019


Vortragende(r) Lena Witterauf
Titel Density-Based Outlier Detection Benchmark on Synthetic Data
Vortragstyp Proposal
Betreuer(in) Georg Steinbuss
Kurzfassung Outlier detection algorithms are widely used in application fields such as image processing and fraud detection. Thus, during the past years, many different outlier detection algorithms were developed. While a lot of work has been put into comparing the efficiency of these algorithms, comparing methods in terms of effectiveness is rather difficult. One reason for that is the lack of commonly agreed-upon benchmark data.

In this thesis the effectiveness of density-based outlier detection algorithms (such as KNN, LOF and related methods) on entirely synthetically generated data are compared, using its underlying density as ground truth.

Vortragende(r) Peter Schuller
Titel Dynamic adaptation to service usage policies
Vortragstyp Masterarbeit
Betreuer(in) Robert Heinrich
Kurzfassung Developing and approach for dynamic adaptation to service usage policies.
Neuen Vortrag erstellen