Semantische Suche

Zur Navigation springen Zur Suche springen

Mittwoch, 21. September 2022, 11:30 Uhr

Ort: Raum 348 (Gebäude 50.34)

Vortragende(r) Martin Wittlinger
Titel Identification and refactoring of bad smells in model-based analyses
Vortragstyp Masterarbeit
Betreuer(in) Sandro Koch
Vortragsmodus in Präsenz
Kurzfassung In der modernen Softwareentwicklung sind modellbasierte Analysen weit verbreitet. Software-Metriken wie die Vorhersage der Cache-Nutzung haben heute ein breites Anwendungsspektrum. Diese Analysen bedürfen ebenso wie traditionelle objektorientierte Programme der Pflege. Bad Smells und ihre Auswirkungen in objektorientiertem Quellcode sind gründlich erforscht worden. Dies fehlt bei der modellbasierten Analyse. Wir haben uns mit objektorientierten Bad Smells beschäftigt und nach ähnlichen Problemen in der modellbasierten Analyse gesucht. Schlechte Gerüche in der Analyse sind ein Faktor, der zur Qualität der Analysesoftware beiträgt. Eine geringere Qualität erschwert den Entwicklungsprozess der Analyse. Wir haben zehn neue Bad Smells entdeckt. Wir haben Algorithmen zur Identifizierung und zum Refaktorisieren für sie entwickelt. Wir stellen Implementierungen der Identifizierungsalgorithmen zur Verfügung und bewerten sie an- hand realer Software. Wir haben versucht, Bad Smells in bestehender Analysesoftware wie Camunda zu erkennen. Wir haben diese Bad Smells in den vorhandenen Analysen gefunden.

Freitag, 14. Oktober 2022, 10:30 Uhr

Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: https://kit-lecture.zoom.us/j/62996772275

Vortragende(r) Thomas Frank
Titel Benchmarking Tabular Data Synthesis Pipelines for Mixed Data
Vortragstyp Bachelorarbeit
Betreuer(in) Federico Matteucci
Vortragsmodus in Präsenz
Kurzfassung In machine learning, simpler, interpretable models require significantly more training data than complex, opaque models to achieve reliable results. This is a problem when gathering data is a challenging, expensive or time-consuming task. Data synthesis is a useful approach for mitigating these problems.


An essential aspect of tabular data is its heterogeneous structure, as it often comes in ``mixed data´´, i.e., it contains both categorical and numerical attributes. Most machine learning methods require the data to be purely numerical. The usual way to deal with this is a categorical encoding.


In this thesis, we evaluate a proposed tabular data synthesis pipeline consisting of a categorical encoding, followed by data synthesis and an optional relabeling of the synthetic data by a complex model. This synthetic data is then used to train a simple model. The performance of the simple model is used to quantify the quality of the generated data. We surveyed the current state of research in categorical encoding and tabular data synthesis

Freitag, 14. Oktober 2022, 11:30 Uhr

Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: https://sdq.kastel.kit.edu/wiki/SDQ-Oberseminar/Microsoft_Teams

Vortragende(r) Pascal Krieg
Titel Preventing Code Insertion Attacks on Token-Based Software Plagiarism Detectors
Vortragstyp Bachelorarbeit
Betreuer(in) Timur Sağlam
Vortragsmodus in Präsenz
Kurzfassung Some students tasked with mandatory programming assignments lack the time or dedication to solve the assignment themselves. Instead, they plagiarize a peer’s solution by slightly modifying the code. However, there exist numerous tools that assist in detecting these kinds of plagiarism. These tools can be used by instructors to identify plagiarized programs. The most used type of plagiarism detection tools is token-based plagiarism detectors. They are resilient against many types of obfuscation attacks, such as renaming variables or whitespace modifications. However, they are susceptible to inserting lines of code that do not affect the program flow or result.

The current working assumption was that the successful obfuscation of plagiarism takes more effort and skill than solving the assignment itself. This assumption was broken by automated plagiarism generators, which exploit this weakness. This work aims to develop mechanisms against code insertions that can be directly integrated into existing token-based plagiarism detectors. For this, we first develop mechanisms to negate the negative effect of many types of code insertion. Then we implement these mechanisms prototypically into a state-of-the-art plagiarism detector. We evaluate our implementation by running it on a dataset consisting of real student submissions and automatically generated plagiarism. We show that with our mechanisms, the similarity rating of automatically generated plagiarism increases drastically. Consequently, the plagiarism generator we use fails to create usable plagiarisms.

Freitag, 21. Oktober 2022, 11:30 Uhr

Ort: MS Teams
Webkonferenz: https://sdqweb.ipd.kit.edu/wiki/SDQ-Oberseminar/Microsoft_Teams

Vortragende(r) Philipp Klaus
Titel Entity Linking für Softwarearchitekturdokumentation
Vortragstyp Bachelorarbeit
Betreuer(in) Jan Keim
Vortragsmodus in Präsenz
Kurzfassung Kurzfassung
Vortragende(r) Raoul Teichmann
Titel Entwicklung einer Entwurfszeit-DSL zur Formalisierung von Runtime Adaptationsstrategien für SAS zum Zweck der Strategie-Optimierung
Vortragstyp Bachelorarbeit
Betreuer(in) Martina Rapp
Vortragsmodus online
Kurzfassung Softwaresysteme der heutigen Zeit werden zunehmend komplexer und unterliegen immer

mehr variierenden Bedingungen. Dadurch gewinnen selbst-adaptive Systeme an Bedeutung, da diese sich neuen Bedingungen dynamisch anpassen können, indem sie Veränderungen an sich selbst vornehmen. Domänenspezifische Modellierungssprachen (DSL) zur Formalisierung von Adaptionsstrategien stellen ein wichtiges Mittel dar, um den Entwurf von Rückkopplungsschleifen selbst-adaptiver Softwaresysteme zu modellieren und zu optimieren. Hiermit soll eine Bachelorarbeit vorgeschlagen werden, die sich mit der Fragestellung befasst, wie eine Optimierung von Adaptionsstrategien in einer DSL zur Entwurfszeit beschrieben werden kann.

Donnerstag, 10. November 2022, 10:00 Uhr

Ort: Raum 348 (Gebäude 50.34)
Webkonferenz: https://sdqweb.ipd.kit.edu/wiki/SDQ-Oberseminar/Microsoft_Teams

Vortragende(r) Denis Priss
Titel A Mobility Case Study Framework for Validating Uncertainty Impact Analyses regarding Confidentiality
Vortragstyp Bachelorarbeit
Betreuer(in) Sebastian Hahner
Vortragsmodus in Präsenz
Kurzfassung Kurzfassung
Vortragende(r) Yakup Evli
Titel A Mobility Case Study for Attack Propagation Analyses
Vortragstyp Bachelorarbeit
Betreuer(in) Maximilian Walter
Vortragsmodus online
Kurzfassung Kurzfassung
Vortragende(r) Tizian Bitschi
Titel Uncertainty-aware Confidentiality Analysis Using Architectural Variations
Vortragstyp Bachelorarbeit
Betreuer(in) Sebastian Hahner
Vortragsmodus in Präsenz
Kurzfassung Kurzfassung